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0. Introduction
Surfaces  are  much  more  complicated  than  curves.   For  example   Riemann  defined  genus  of an alge -

braic  curve  in the  1850’s.   But  there  was  no  genus  of an algebraic  surface  until  the  1950’s.  The  interim  

was  spent  abstracting  algebra  and  topology  to build  the  tools  for  the  general  Riemann-Roch  theorem.   

Unfortunately  the  new  abstract  formulation,  while  impressive  mathematically,  gave  little  insight  into  

actual  surfaces.   Instead  I will  attempt  to discuss  surfaces  not  with  abstractions  but  with  Mathematica  

algorithms.

In this  story  I will   restrict  my  attention  to surfaces  which  are  either  naive  algebraic  surfaces  or surfaces  

defined  by a rational  parameterization.   In particular  I will  then  be able  to plot  these  surfaces,  at least  

locally,  using  Mathematica’s  ContourPlot3D in the  first  case  and ParametricPlot3D  in the  second.   

Again  my  intention  is to be visual  and  numerical  rather  than  mathematically  exact.   

This  book  is addressed  to readers  of my  Plane  curve  book  and  my  Space  Curve  Book.  In particular  one  

should  be familiar  with  working  with  machine  numbers  in Mathematica.   Other  than  that  there  will  be  

no prerequisite.   Many  of the  functions  used  in this  book  are  already  in the  Global  Functions  notebook  

for  my  Space  Curve  book  which  already  contains  many  of the  Plane  curve  functions.   There  is an inclu -

sive  GlobalFunctionsNS.nb notebook  for  this  book.   Global  functions  specifically  for  surfaces  may  

end  in NS  (naive  surface)  or RS  (rational  surface).

Belated  Acknowledgement:   This  acknowledgment  was  le�  out  of the  Plane  Curve  book  by the  edi -

tors,  possibly  inadvertently.   I did  not  think  to include  it in the  Space  Curve  Book.   But  it is time  to give  a 

belated  acknowledgement  to Hugh  J Hamilton  who  was  my  Professor  in a year  course  in Advanced  

Calculus  at Pomona  College  in the  1964-65  academic  year.   Hamilton  appeared  to be a very  precise  and  

thri�y  little  Scotsman  who  always  wore  a Scottish  plaid  tie  and  sports  coat  but  he was  active  in the  

Southern  California  Socialist  party.   His  lecture  style  was  to copy  the  textbook  to the  blackboard.  He  

especially  emphasized  the  epsilons  and  deltas.   But  his  unique  characteristic  was  his  tests,  2 or 3 

problems  asking  for  an essay  style  presentation  of an application  of the  theory  similar  to my  presenta -

tion  of material  in this  book.   Later  he  published  the  textbook  A primer  of Complex  Variables  with  an  

Introduction  to Advanced  Techniques , Brooks  Cole  Publisher,  a completely   heuristic  book  with  hardly  

an epsilon  or delta.   These  books  are   motivated  by his  example.
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1. Introduction  to Surfaces

1.1 Introduction to Naive Surfaces
A naive surface is a surface in ℝ3 which is the full zero set of a single polynomial equation f=f(x,y,z) in

three variables subject to a few conditions to be discussed later . For example the polynomial might be

ts3 = 1.752 - 6.4 x - 11.464 x2 + 0.64 x3 + x^4 + 1.536 y2 +

0.64 x y2 + x2 y2 + 2.88 x^2 z - 5.12 y^2 z + 3.584 z2 + 3.84 x z2 + x2 z2;

Analogously  to Gauss'  principle  in my  Plane  Curve  Book  this  zero  set  divides  the  plane  into  two  sets  

f + = {{x,y,z}  | f (x , y, z) > 0 } and  f - = {{x, y, z} f (x, y, z) < 0} which  have  the  zero  set  of f  as  the  complete  

boundary.   This  allows  us to recover  this  zero  set,  which  we  will  o�en  just  call  f , by  looking  for  points  

where  the  value  of f (x,y,z)  on  neighboring  points  changes  from  positive  to negative  or vice  versa.   In 

Mathematica this  is obtained  using  the  built-in  function  ContourPlot3D.    For  example  we  can  visu -

alise  a small  part  of the  surface ts3  by

Out[  ]=

Plot 1.1a

Note  that  in this  book  I will  generally  use  the  option  Mesh->None because  we  will  o�en  be drawing  

curves  on  our  surfaces.   It is important  to note  that  the  boundary  curves  in this  picture  are  simply  the  

curves  where  this  surface  meets  the  bounding  box,  they  are  not  intrinsic  to this  surface.   Note  the  3  
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vertical  lines  colored  green  where  ts3  > 0 and  red  where  ts3  < 0.  What  we  notice  is that  they  are  red  

“inside”  the  surface  and  green  “outside”.   This  shows  that  the  surface  is two  sided  with  an inside  and  

outside.  We  talk  about  this  more  in a bit.

Note  this  plot  changes  as we  change  the  bounding  box  or orientation.   We  can  see  more  or less  of the  

surface  or more  or less  detail.

In[  ]:= Pl1b = ContourPlot3D [ts3 ⩵ 0, {x, -10, 10}, {y, -10, 10}, {z, -10, 10}, Mesh → None ];

In[  ]:= {Pl1b, Pl1b}

Out[  ]=  , 

Some  things  can  go wrong  .  The  equation  x ^ 2 + y ^ 2 + z ^ 2 = 0  has  only  one  solution,  {0,0,0}.   We  call  

equations  that  do  not  give  a 2-dimensional  figure  degenerate.    Also  note  that  the  equation  ts3 2 = 0 has  

the  same  solution  set  as ts3  = 0 but  the  contour  plot

In[  ]:= ContourPlot3D ts32 ⩵ 0, {x, -10, 10}, {y, -10, 10}, {z, -10, 10}, Mesh → None 

Out[  ]=

is empty.   This  is because  there  is no  sign  change  from  positive  to negative.   Remember  that  since  the  

function  ContourPlot3D is numerical,   zero  is not  recognized  as a number.   So  changes  from  positive  

to zero  are  not  detected.   So  to get  a correct  picture  we  must  use  square  free  polynomials  only.   Fortu -

nately  we  have  a global  function  sqFreeMD,  this  will  not  only  tell  us  if a polynomial  is square  free  but  if 

it is not  it will  return  a square  free  polynomial  with  the  same  solution  set.   Fortunately  this  function  

does  not  require  us to factor  the  polynomial  so it works  on  numerical  as well  as integer  polynomials.

Here  is a more  complicated  problem  that  came  up  with  a surface  related  to ts3,  I call  it ts2.
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In[  ]:= ts2 = NExpand (-1 + z) × 48 - 80 x + 25 x2 + 16 z2

Out[  ]= -48. + 80. x - 25. x2 + 48. z - 80. x z + 25. x2 z - 16. z2 + 16. z3

When  we  try  to plot  ts2  we  get  the  following

In[  ]:= ContourPlot3D [ts2 ⩵ 0, {x, -1, 4}, {y, -2, 2}, {z, -2, 2}, Mesh → None ]

Out[  ]=

But  this  surface  is the  union  of a plane  and  a cylinder  so the  plot  should  be

In[  ]:= ContourPlot3D z - 1 ⩵ 0, 48 - 80 x + 25 x2 + 16 z2 ⩵ 0,
{x, -1, 4}, {y, -2, 2}, {z, -2, 2}, Mesh → None 

Out[  ]=

The  problem  is that  there  is a line  of intersection  y = 0, z =
25

16
 } of  these  two  surfaces.   Even  though  

this  line  is not  a factor  of either  component  it is somehow  counted  twice  in the  contour  plot  of the  

product,  which  is square  free.
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In[  ]:= sqFreeMD [ts2, {x, y, z}, dTol ]

» Square Free

Out[  ]= -48. + 80. x - 25. x2 + 48. z - 80. x z + 25. x2 z - 16. z2 + 16. z3

Here  is a picture  .

In[  ]:= Show ContourPlot3D z - 1 ⩵ 0, 48 - 80 x + 25 x2 + 16 z2 ⩵ 0, {x, -1, 4}, {y, -2, 2}, {z, -2, 2},

Mesh → None , ParametricPlot3D [{1.5625, t, 1}, {t, -2, 2}, PlotStyle → Black ],

ParametricPlot3D [{1.5625, 0, t}, {t, 1, 2}, PlotStyle → Green ],

ParametricPlot3D [{1.5625, 0, t}, {t, -1, 1}, PlotStyle → Green ],

ParametricPlot3D [{1.5625, 0, t}, {t, -2, -1}, PlotStyle → Red],

ParametricPlot3D [{3, 0, t}, {t, 1, 2}, PlotStyle → Green ],

ParametricPlot3D [{3, 0, t}, {t, -2, 1}, PlotStyle → Red]

Out[  ]=

In some  ways  the  original,  wrong  picture,  did  a better  job  of explaining  the  inside  and  outside  of the  

surface!

1.1.2 Regular  and Smooth  Surfaces

Before  stating  our  main  theorem  in this  section  we  make  a definition.   A point  p in a surface  f  is regular 

if the  norm  of the  gradient  is greater  than  zero.   This  is implemented,  in the  case  of  point  p in ts2
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In[  ]:= p = {25 / 16, 2, 1}

ts2 /. Thread [{x, y, z} → p]

grd = Grad [ts2, {x, y, z}] /. Thread [{x, y, z} → p]

Out[  ]= 
25

16
, 2, 1

Out[  ]= 0.

Out[  ]= {0., 0, 0.0351563 }

Here  p, and  ts2  are  exact  so the  last  component  of the  gradient  is sufficiently  large  to be  non-zero.

An important  property  of regular  points  is that  we  get  a tangent  plane  and  normal  line .

In[  ]:= tangentPlaneNS [f_, p_, X_] := (Grad [f, X] /. Thread [{x, y, z} → p]).(X - p)

normalLineNS [f_, p_, X_] := lineMD [p, Append [(Grad [f, X] /. Thread [{x, y, z} → p]), 0], X]

In the  example  above

In[  ]:= tpp = tangentPlaneNS [ts2, {25 / 16, 2, 1}, {x, y, z}]

nlp = normalLineNS [ts2, {25 / 16, 2, 1}, {x, y, z}]

Out[  ]= 0. + 0.0351563 × (-1 + z)

Out[  ]= -0.100593 - 0.759004 x + 0.643268 y + 9.28877 × 10-17 z,

0.924931 - 0.309563 x - 0.22062 y - 1.97547 × 10-17 z

Of course  this  just  says  the  tangent  plane  to the  plane  z = 1 at the  regular  point  of ts2  is the  plane  z - 1 . 

But  this  example  exposes  a problem  because  we  want  to consider  the  points  where  the  cylinder  meets  

the  plane  tangently  as  singular.  Fortunately  we  did  give  a good  discussion  of multiplicity  in my  Space  

Curve  Book  section  2.3.3.1.  In this  example

In[  ]:= multiplicityMD [Prepend [nlp, ts2], {25 / 16, 2, 1}, {x, y, z}, 1*^-6 ]

Out[  ]= 2

Note  that  we  can  also  get  the  multiplicity  directly  from  NSolve  .

In[  ]:= NSolveValues [Append [nlp, ts2], {x, y, z}, Reals ]

Out[  ]= {{1.5625, 2., -0.998901 }, {1.5625, 2., 0.998901 }, {1.5625, 2., 1.}}

The  last  two  zeros  are  numerically  p so p is a double  point.

So our  normal  line  meets  the  surface  in a double  point,  as can  be easily  seen  from  the  plot  above  .

We  thus  define  a surface   to be  smooth or  non-singular at  point  p if both  the  gradient  is non-zero  and  

the  multiplicity  of the  intersection  of the  normal  line  and  surface  is 1.  A point  where  either  the  gradient  

is zero  or the  intersection  of the  normal  line  and  surface  has  multiplicity  2 or greater  with  a loose  

tolerance  is called  singular.

It should  be mentioned  that  [Abhyankar,  p.205]  mentions  that,  in our  notation,  the  set  of non-regular  

points  must  be  algebraic,  in our  case  a finite  point  set  or a  curve,  as in ts2,  but  the  set  of singular  points  
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need  not  be  algebraic.

Our  main  theorem,  slightly  modified  from  a standard  theorem  of differential  geometry  is

Jordan  - Brouwer   Let  f  be  a  non-degenerate  square  free  polynomial  giving  a smooth  surface.   Then  the  

surface  f is two  sided,  moreover  for  p in the  surface  there  is a neighborhood  of p which  is topologically  an  

open  plane  disk.

What  this  means  is that  the  points  of a smooth  naive  surface   define   an  oriented  manifold.  To see  a 

definition  and  discussion  this  see  a differential  geometry  text  such  as [Montiel, Ros].

We  will  only  refer  to smooth  surfaces  as having  sides.   As  an example  consider  the  surface   x y z = 0

In[  ]:= ContourPlot3D [x y z ⩵ 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Mesh → None, MaxRecursion → 4]

Out[  ]=

These  planes  actually  break  up  space  into  8 regions  rather  than  2, so sides  are  not  actually  a useful  

concept.

The  Jordan  - Brower  theorem  only  refers  to affine  surfaces.   The  projective  surface  defined  by f = 0, 

more  specifically  the  projective  closure  of the  affine  f = 0, need  not  be  two  sided,  orientable.   A crite -

rion  for  a smooth  real  projective  surface  to be two  sided  is that  for  every  line  which  intersects  this  

surface  only  transversely,  that  is  does  lie  in this  surface  , must  intersect  the  surface  in an even  number,  

counted  by multiplicity,   of  projective  points.   In particular  the  plane  z = 0 is one  sided  as a projective  

surface.   For  more  information  see  section  1.9.

1.2 Introduction to Rational Parametric Surfaces
A second  way  to define  a surface  is to use  a rational  parametric  function.   A simple  one  is 
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In[  ]:= F1 = {s, t, s^2 - t^2}

Out[  ]= s, t, s2 - t2

We  can  plot  part  of this  surface  using  ParametricPlot3D.

In[  ]:= ParametricPlot3D [F1, {s, -10, 10}, {t, -10, 10}, PlotRange → 10, Mesh → None ]

Out[  ]=

Unlike  contour  plots  giving  a plot  range  is optional,  but  in most  cases  a good  idea  to get  a nice  plot.   

Once  could  also  do  this  to control  each  variable  separately  with

In[  ]:= ParametricPlot3D [F1, {s, -10, 10}, {t, -10, 10},

PlotRange → {{-10, 10}, {-10, 10}, {-5, 10}}, Mesh → None ]

Out[  ]=

As with  contour  plots  I disable  the  Mesh  because  I will  want  to draw  my  own  curves  on  this  surface.   

One  can  also  use  the  option  MaxRecursion with  parametric  plots  if the  plot  is complicated.
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More  generally  a rational   parametric  surface  in ℝ 3 is given  by a function

F =  f1 (s, t)

f4 (s, t)
,

f2 (s, t)

f4 (s, t)
,
f3 (s, t)

f4 (s, t)


where the fi are polynomial functions of the two variables s, t.

We  generally   like  to have  the  common  denominator  f4  but  it is not  absolutely  required  as it can  be 

calculated,  the  important  thing  is that  no  denominator  is the  constant  0.  We  do  not  require  the  numera -

tors  and  the  denominator  to have  the  same  degree,  the  degree  of the  numerators  may  be less  than,  

equal  or greater  than  the  degree  of the  numerator  and  different  from  each  other.   In the  polynomial  

case  of F1 above  the  denominators  are  all  the  constant  1 of degree  0.  When   the   parameters  {s, t}  

make  f4(s, t) = 0 we  say  F is undefined  or  infinite,  in Chapter  2, particularly,  we  will  use  the  latter  termi -

nology.    This  zero  set  of the  denominator  may  be a discrete  point  set  or a curve.   When  working  with  

rational  parametric  surfaces  the  default  range  of s, t is  -∞ < s, t <∞ in this  chapter,  however  specific  

examples  may  have  a smaller  range.

Here  is a non-trivial  example  of a rational  parametric  surface,  the  torus.  Note  in this  case  the  definition  

does  not  give  a common  denominator  but  it is easily  seen  that  a common  denominator  would  be 

1 + s2 × 1 + t2.

In[  ]:= Ts = 
4 s 1 + t + t2

1 + s2 × 1 + t2
, -

2 × -1 + s2 - t + s2 t - t2 + s2 t2
1 + s2 × 1 + t2

,
1 - t2

1 + t2
;

In plotting  a rational  surface  we  can  not,  in general,  show  the  entire  surface  so we  pick  a large  bounded  

range.

In[  ]:= ParametricPlot3D [Ts, {s, -10, 10}, {t, -10, 10}, PlotRange → All,

Mesh → None, MaxRecursion → 4, PlotStyle → Opacity [.8]]

Out[  ]=

We  see  this  finite  range  gives  a deformed  rectangle  curved  in both  dimensions.   We  can  easily  imagine  

that  if we  used  the  full  range   -∞ < s, t <∞ we  would  get  a torus.   The  opacity[.8]  is to help  visualize  

that  there  is a strip  missing  on  the  bottom,  the  

MaxRecursion→  4 helps  to smooth  out  the  plot.
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At a given  point  of a rational  parameterization  {s0, t0} we  can  take  the  partial  derivatives  and  evaluate  

to get  vectors.   For  example  with  the  torus  Ts and  point   p = {2, 3}

In[  ]:= p = {2, 3};

vs = D[Ts, s] /. Thread [{s, t} → p]

vt = D[Ts, t] /. Thread [{s, t} → p]

Tsp = Ts /. Thread [{s, t} → p]

Out[  ]= -
78

125
, -

104

125
, 0

Out[  ]= -
16

125
,

12

125
, -

3

25


Out[  ]= 
52

25
, -

39

25
, -

4

5


The  normal  vector  is is the  cross  product  vs×vt

In[  ]:= nv = Cross [vs, vt]

Out[  ]= 
312

3125
, -

234

3125
, -

104

625


and  the  tangent  plane   is nv.(X-F(p))

In[  ]:= tp = nv.({x, y, z} - Tsp)

Out[  ]=

312 × - 52

25
+ x

3125
-

234 ×  39
25

+ y
3125

-
104

625
×

4

5
+ z

or,  better

In[  ]:= tp = Expand [N[tp]]

Out[  ]= -0.4576 + 0.09984 x - 0.07488 y - 0.1664 z
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In[  ]:= Show [ContourPlot3D [tp ⩵ 0, {x, -4, 4}, {y, -4, 4}, {z, -4, 4},

Mesh → None, ContourStyle → Directive [Cyan, Opacity [.5]]],

ParametricPlot3D [Ts, {s, -10, 10}, {t, -10, 10}, PlotRange → All,

Mesh → None, MaxRecursion → 4, PlotStyle → Opacity [.8], PlotRange → All],

Graphics3D [{Black, Arrow [{Tsp, Tsp + 10 nv}]}]]

Out[  ]=

The  general  code  is

In[  ]:= normalVectorRS [F_, st0_, st_] := Module [{pv, vs, vt},

vs = D[F, st〚1〛] /. Thread [st → st0];

vt = D[F, st〚2〛] /. Thread [st → st0];

Cross [vs, vt]]

tangentPlaneRS [F_, st0_, st_, X_] := Module [{nv, p},

p = F /. Thread [st → st0];

nv = normalVectorRS [F, st0, st];

N[Expand [nv.(X - p)]]]

For  this  example

In[  ]:= normalVectorRS [Ts, {2, 3}, {s, t}]

tangentPlaneRS [Ts, {2, 3}, {s, t}, {x, y, z}]

Out[  ]= 
312

3125
, -

234

3125
, -

104

625


Out[  ]= -0.4576 + 0.09984 x - 0.07488 y - 0.1664 z

As with  naive  surfaces  a rationally  parameterized  surface  F (s, t) is regular  at {s0, t0}  if there  is a tangent  

plane  at F(s0, t0).  But  as with  naive  algebraic  surfaces  regularity  at {s0,t0}   does  not  imply  smoothness  
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at F(s0,t0).    But  the  situation  is very  different.   For  naive  surfaces  it is a local  problem,  for  rationally  

parameterized  surfaces  it is a global  problem.   Here  are  two  examples.

In[  ]:= node3D = {t^2 - 1, t^3 - t, s}

Out[  ]= -1 + t2, -t + t3, s

In[  ]:= Show [ParametricPlot3D [node3D, {s, -3, 3}, {t, -1.5, 1.5}, Mesh → None ],

Graphics3D [{Red, Thickness [.01], Line [{{0, 0, -3}, {0, 0, 3}}]}]]

Out[  ]=

Note  the  line  x = y = 0 appears  to be a singular  locus  of this  surface.   But  points  on  this  line  are  of the  

form

In[  ]:= node3D /. Thread [{s, t} → {s, -1}]

node3D /. Thread [{s, t} → {s, 1}]

Out[  ]= {0, 0, s}

Out[  ]= {0, 0, s}

However  

In[  ]:= normalVectorRS [node3D, {s, -1}, {s, t}]

normalVectorRS [node3D, {s, 1}, {s, t}]

Out[  ]= {-2, -2, 0}

Out[  ]= {-2, 2, 0}

are  non  - zero,  so all  of  these  points  are  regular  in the  the  parameters.  The  problem  is that  different  

parameter  values  give  the  same  points.    While  harder  to deal  with  the  problem  is no  worse  than  with  

ts2  so we  have  nothing  to do.

A second  example  is similar  but  causes  an additional  problem.
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In[  ]:= ribbon = {t^3 + 2, s^2 - 3 t^2, t^2 + t - 2 + 1}

Out[  ]= 2 + t3, s2 - 3 t2, -1 + t + t2

In[  ]:= ParametricPlot3D [ribbon, {s, -1, 1}, {t, -2, 2}, Mesh → None, PlotStyle → Opacity [.8]]

Out[  ]=

Here  the  plot  does  not  show  a self  intersection.   However

normalVectorRS [ribbon, {s, b}, {s, t}]

Out[  ]= 2 s + 4 b s, 0, -6 b2 s

so when  s = 0 this  is not  regular.   When s , t  are  both  non-zero  then  it is regular  but  note  that  rib -

bon3D(s,t)  = ribbon3D(-s,t)  so each  point  on  the  surface  is double,  that  is,  comes  from  two  different  

parameter  values  so cannot  be  considered  smooth.

This  reminds  one  of Einstein’s  “spooky  action  at a distance”.   If we  can  only  see  a parameter  space  for  

the  universe  rather  than  the  actual  universe  then  an atom  seemingly  far  away  perhaps  behaves  the  

same  as one  nearby   because  in the  universe  it may  actually  be  the  same  atom.   A spooky  alien  transmis -

sion  from  a planet  circling  a distant  star  could  just  be  Fox  News.

This  is not  a pleasant  thought.   For  the  ribbon  example  we  can  fix  this  problem  by insisting  that  s > 0 .  

But  this  parametric  surface  has  an edge,  it does  not  go on  infinitely  in the  negative  s direction.

In the  next  section  we  will  discover  the  real  answer  to this  problem  that  we  can  not  see  the  true  nature  

of a point  of the  parametric  surface  just  working  locally,  mainly  that  rational  parametric  surfaces,  even  

the  ribbon,  are  subsets  of naive  algebraic  surfaces.

I leave  you  with  a plot  of a more  complicated  rational  parametric  example  using  only  cubic  functions.   I 

will  not  try  to analyze  this  here.

In[  ]:= strange1 = -3 - 3 s2 - 3 s3 + 3 s t - s2 t + 2 t2 - 3 s t2 + 3 t3,

-2 - 3 s2 - s3 + 2 t - s2 t - t2 + s t2, s + 2 s2 + 3 s3 - 3 t - s t - 2 t2 - 3 s t2 + 3 t3;
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In[  ]:= ParametricPlot3D [strange1 , {t, -5, 5}, {s, -5, 5},

PlotRange → {{-8, 8}, {-8, 1}, {-8, 5}}, Mesh → None, MaxRecursion → 4]

Out[  ]=
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1.3 Implicit Equation Theorem for Rational Parametric 

Surfaces
Here  we  give  two  proofs  that  every  rational  parametric  surface  is contained  in a naive  in a naive  sur -

face.   The  first  is more  theoretical,  the  second  somewhat  more  practical.

1.3.1  Theoretical  Method

A proof  in the  curve  case  appeared  in my  Mathematica  Journal  article  [Dayton,  Degree  vs Dimension  of 

Rational  Parametric  Curves].   Another  discussion  is in my  Space Curve Book 3.1.4.

The  proof  for  surface  is slightly  modified  but  the  idea  is the  same:  a rational  parametric  function  can  be 

viewed  as Fractional  Linear  Transformation  (FLT)  from  an appropriate  generic  curve.

 We  write  our  parametric  surface  in the  standard  form  of §1.1  with  a common  denominator.   Since  we  

now  have  two  parameters  if m  is the  largest  degree  of a monomial  there  are  binomial  coefficient  

m + 2

2
 bivariate  monomials  of degree  m  or  less.   This  number,  the  dimension  of the  space  of generic  

curves  of degree  m, can  become  uncomfortably  large.   It turns  out  that  it enough  to just  use  the  mono -

mials  actually  used  in the  rational  parametric  function  and  monomials  that  divide  these.

 The  method  is thus  to take  this  set  of n monomials,  calling  them  X [1], X [2].…, X [n].  We  take  a set  of 

relations  between  these  variables  and  find  a HBasis  for  this  using,  because  it is faster  in this  case,  a 

Groebner  basis  for  this  basis.   We  construct  a (n+1)×4  matrix  for  our  FLT  matrix.   Then  an application  of 

FLTMD  will  give  an equation  set  defining  the  smallest  algebraic  surface  in ℝ3 containing  the  image  

surface  of our  FLT.   Any  equation  of this  set  will  contain  our  parameterized  surface  so we  can  just  pick  

one.   While  this  single  equation,  defining  a naive  surface,  may  not  completely  describe  our  surface  

which  may  be smaller  it will  serve  to give  us a Jordan-Brouwer  theorem  and  this  surface  can  find  locally  

the  local  behaviour  of this  function  at a smooth  point.

We  proceed  with  an example

In[  ]:= hyperboloid = 
t - s^2 t

1 - s^2
,
1 + s2 - 2 s t

1 - s2
,
2 s - t - s2 t

1 - s2
;

I collect  the  monomials  used

In[  ]:= V = s, t, s t, s2, s2 t;

I now  find  a 8×4 matrix  which  produces  this  rational  function  via  a transformation  function,  note  the  

first  7 columns  can  be indexed  by the  monomials  in V and  the  last  column  is the  constant.   The  first  3 

rows  are  from  the  numerator,  the  last  from  the  denominator.

SSchapter1v2.nb    17



In[  ]:= A = {{0, 1, 0, 0, -1, 0}, {0, 0, -2, 1, 0, 1}, {2, -1, 0, 0, -1, 0}, {0, 0, 0, -1, 0, 1}};

A // MatrixForm

Out[  ]//MatrixForm=

0 1 0 0 -1 0

0 0 -2 1 0 1

2 -1 0 0 -1 0

0 0 0 -1 0 1

To check  

In[  ]:= TransformationFunction [A][V]

Out[  ]= 
t - s2 t

1 - s2
,
1 + s2 - 2 s t

1 - s2
,
2 s - t - s2 t

1 - s2


Next  I treat  the  monomials  as variables

In[  ]:= Clear [Y]

In[  ]:= AY = Table [Y[i] → V〚i〛, {i, 5}]

Out[  ]= Y[1] → s, Y[2] → t, Y[3] → s t, Y[4] → s2, Y[5] → s2 t

Note  that  the  Y[i]  have  only  one  bracket,  thus  these  are  independent  variables  rather  than  members  of 

a list.   However  I don’t  want  these  to be  independent  so I give  a set  of relations  on  these  Y[i]s.

In[  ]:= sys = {Y[3] - Y[1] × Y[2], Y[4] - Y[1]^2, Y[5] - Y[2] × Y[4]};

To find  a H - basis  for  this  large  exact  system  I use  Groebner  Bases.

In[  ]:= gBasis = GroebnerBasis [sys, Keys [AY], MonomialOrder → DegreeLexicographic ]

Out[  ]= -Y[3]2 + Y[2] × Y[5], Y[2] × Y[4] - Y[5], -Y[3] × Y[4] + Y[1] × Y[5],

Y[1] × Y[3] - Y[5], Y[1] × Y[2] - Y[3], Y[1]2 - Y[4], Y[3]2 Y[4] - Y[5]2

Note

In[  ]:= Length [gBasis ]

Out[  ]= 7

I now  find  my  implicit  equation  by

In[  ]:= {time, eq} = Timing [FLTMD [gBasis, A, 4, Keys [AY], {x, y, z}, dTol ]]

» Initial Hilbert Function {1, 4, 9, 16, 25 }

» Final Hilbert Function {1, 4, 9, 16, 25 }

Out[  ]= 2.68174, 1. - 1. x2 - 1. y2 + 1. z2

In[  ]:= qpEq = eq〚1〛
Out[  ]= 1. - 1. x2 - 1. y2 + 1. z2

So I get  my  equation  in under  3 seconds.  

Finally  I check  by comparing  plots  . The  second  one  has  the  mesh.  
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In[  ]:= Show [ContourPlot3D [qpEq ⩵ 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh → None ],

ParametricPlot3D [hyperboloid , {s, -20, 20}, {t, -3, 3}, PlotStyle → LightGray ]]

Out[  ]=

1.3.2   Direct  Method

Although  I was  able  compute  the  example  above  in around  3 seconds  of computer  time  this  is an 

eternity  for  Mathematica.   With  many  more  monomials  this  method  is impractical.   The  following  

method  may  work  better,  but  we  must  first  consider  polynomial  parameterizations.

The  function  here  is based  on  the  Space  Curve  Book  function  p2aRawMD  which  in turn  was  based  on  

the  algorithm  in Appendix  1.5  of the  plane  curve  book.   The  reader  who  wants  an explanation  of how  

this  works  should  look  there.   This  routine  expects  exact  or very  accurate  numerical  coefficients.   Here F  

is the  polynomial  parameterization,  d is the  maximal  degree  of a monomial  in F ,  md is the  maximum  

degree  you  are  allowing  an implicit  equation,  T  are  the  variable  in F  and  X  are  the  variables  in ℝ3.  

Actually  this  works  for  parameterized  surfaces  in ℝn for  any  n so X will  be  the  variables  there.
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In[  ]:= par2affRS [F_, d_, md_, T_, X_] :=

Module [{n, TB, ar, cr, SA, AK, mon, ncr, nak, NSA, medNSA, FA, SAA},

n = Length [X];

If[Length [F] ≠ n, Echo ["Dimension mismatch F,X"]; Abort []];

TB = Expand [Table [mon /. Thread [X → F], {mon, mExpsMD [md, X]}]];

cr = CoefficientRules [#, T] & /@ TB;

ncr = Length [cr];

AK = exps [2, md * d];

nak = Length [AK];

SAA = Reap [For[i = 1, i ≤ ncr, i++, For[j = 1, j ≤ nak, j++,

If[KeyExistsQ [cr〚i〛, AK〚j〛], Sow[{i, j} → cr〚i〛[AK〚j〛]]]]]]〚2, 1〛;
SA = Transpose [SparseArray [SAA]];

NSA = NullSpace [SA];

If[Length [NSA] ⩵ 0, Return ["Fail, try higher md"],

Echo [Length [NSA], "Number of equations "]];

medNSA = Median [Abs[Flatten [NSA]]] + 1;

N[NSA / medNSA ].mExpsMD [md, X]

]

We  demonstrate  this  on  our  ribbon  example  from  the  previous  section.

In[  ]:= {time, ribboneqs } = Timing [par2affRS [ribbon, 3, 3, {s, t}, {x, y, z}]]

» Number of equations 1

Out[  ]= 0.018665 , 5. - 1. x2 + 9. z - 3. x z + 3. z2 + 1. z3

In[  ]:= ribboneq = roundPolyMD [ribboneqs 〚1〛, {x, y, z}, 1]

Out[  ]= 5 - x2 + 9 z - 3 x z + 3 z2 + z3

20     SSchapter1v2.nb



In[  ]:= Show [ContourPlot3D [ribboneq ⩵ 0, {x, -5, 10},

{y, -12, 10}, {z, -5, 5}, Mesh → None, ContourStyle → Opacity [.5]],

ParametricPlot3D [ribbon, {s, .001, 6}, {t, -5, 5}, PlotStyle → LightGray ]]

Out[  ]=

Again  the  parameterized  image  is given  by the  mesh.   We  note  that  there  is a lower  part  of the  plot  of 

the  implicit  surface  that  is not  covered  by the  parameterized  surface  which  had  a domain  of s > 0.   But  

even  if we  used  parameter  values  of s < 0 we  would  not  get  more  coverage.   Thus  the  parameterization  

ribbon  only  parameterizes  part  of the  implicit   surface.

Here  is a discouraging  example.   We  try  to implicitize  a polynomial  parameterized  surface  with  coordi -

nates  of degree  3.  We  start  with  a random  A:

In[  ]:= A = Append [RandomInteger [{-4, 4}, {3, 10}], {0, 0, 0, 0, 0, 0, 0, 0, 0, 1}]

Out[  ]= {{2, 3, -3, 1, -3, 3, -1, -2, 1, 0}, {1, -2, -4, -4, -3, -2, 2, 3, -4, 1},

{1, -4, -4, -2, 0, 1, -1, -4, 1, -3}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 1}}

In[  ]:= Dimensions [A]

Out[  ]= {4, 10}

In[  ]:= Y = Drop [ mExpsMD [3, {s, t}], 1]

Out[  ]= s, t, s2, s t, t2, s3, s2 t, s t2, t3
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In[  ]:= TransformationFunction [A][Y]

Out[  ]= 2 s - 3 s2 + 3 s3 + 3 t + s t - s2 t - 3 t2 - 2 s t2 + t3,

1 + s - 4 s2 - 2 s3 - 2 t - 4 s t + 2 s2 t - 3 t2 + 3 s t2 - 4 t3,

-3 + s - 4 s2 + s3 - 4 t - 2 s t - s2 t - 4 s t2 + t3

Eqns = par2affNS [F, 3, 3, {s, t}, {x, y, z}];

Out[  ]= Fail, try higher md

Eqns = par2affNS [F, 3, 5, {s, t}, {x, y, z}];

Out[  ]= Fail, try higher md

Eqns = par2affNS [F, 3, 8, {s, t}, {x, y, z}];

Out[  ]= Fail, try higher md

In[  ]:= Eqns = par2affNS [F, 3, 9, {s, t}, {x, y, z}];

» Number of equations 1

In[  ]:= Length [Eqns〚1〛]
Out[  ]= 148

Our  smallest  implicit  equation  is of degree  9 with  148  terms!   In fact  this  will  almost  always  be the  case  

but  it shows  that  there  is an implicit  equation.   Of  course  this  gets  much  worse  for  higher  degrees.

There  is a trick  we  can  use  to handle  a rational  parameterization  :   see  my  Mathematica  Journal  article  

[Degree  vs Dimension  of Rational  Parametric  Curves].

Take  the  original  parameterization  and  strip  all  constants,  also  put  the  common  denominator  as a 4th  

component.   Check  to make  sure  components  are  independent  in space  of 2 variable  polynomials,  if 

not  see  my  Mathematica  Journal  article  for  a reduction.   Use  pol2affNS  to find  an implicit  polynomial  

system  with  variables  {x,y,z,w}.   If this  is more  than  2 or 3 equations  reduce  by hBasisMD.   Now  create  a 

matrix  by  taking  the  first  4 rows  of the  5×5 identity  matrix.   In the  5th  column  replace  the  constants  that  

you  stripped.   Then  apply  FLTMD  to the  implicit  polynomial  system  using  this  4×5 matrix.   You  should  

get  your  implicit  system  of the  rational  parametric  surface.   We  illustrate  using  the  above

In[  ]:= hyperboloid = 
t - s2 t

1 - s2
,
1 + s2 - 2 s t

1 - s2
,
2 s - t - s2 t

1 - s2
;

Strip  off  the  constants  from  each  term  in the  numerator  and  denominator.

In[  ]:= strippedh = {t - s^2 t, s^2 - 2 s t, 2 s - t - s^2 t, -s^2};

Note  we  can  recover  hyperboloid  from  strippedh by an FLT:   Let
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In[  ]:= AH = {{1, 0, 0, 0, 0}, {0, 1, 0, 0, 1}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 1}};

AH // MatrixForm

Out[  ]//MatrixForm=

1 0 0 0 0

0 1 0 0 1

0 0 1 0 0

0 0 0 1 1

In[  ]:= TransformationFunction [AH][strippedh ]

Out[  ]= 
t - s2 t

1 - s2
,
1 + s2 - 2 s t

1 - s2
,
2 s - t - s2 t

1 - s2


In[  ]:= raweq = pol2affNS [strippedh , 3, 3, {s, t}, {x, y, z, w}]

» Number of equations 8

Out[  ]= 0. + 2. w - 1. w3 - 1. x2 + 2. w x2 - 2. y + 1. w y2 - 2. w x z + 1. z2,

0. + 1. w x + 1. x3 + 1. x y + 1. w x y + 1. x y2 - 1. w z - 1. w2 z - 1. y z - 1. w y z - 1. x z2,

0. + 2. w - 1. x2 - 1. w x2 - 2. y + 2. w y - 2. y2 + 2. w x z + 1. z2 - 1. w z2, 0. - 1. w x - 1. x3 -

1. x y - 1. w x y - 1. x y2 - 1. w z + 1. x2 z + 3. y z + 1. w y z + 1. y2 z + 1. x z2 - 1. z3,

0. + 1. w - 2. x2 - 1. w x2 - 3. y - 2. w y - 1. w2 y - 2. y2 - 1. w y2 - 1. x z + 1. w x z + 1. z2,

0. - 1. w + 2. x2 + 1. w x2 + 3. y + 1. x2 y + 4. y2 + 1. w y2 + 1. y3 + 1. x z - 1. w x z - 1. z2 - 1. y z2,

0. - 2. w x - 1. w2 x + 1. x3 + 2. x y + 1. x y2 - 1. x z2, 0. - 2. w - 1. w2 + 1. x2 + 2. y + 1. y2 - 1. z2

We  have  lots  of equations  so we  can  reduce  the  system

In[  ]:= hbeq = hBasisMD [raweq, 3, {x, y, z, w}, 1.*^-10 ]

» Initial Hilbert Function {1, 4, 9, 13 }

» Final Hilbert Function {1, 4, 9, 13 }

Out[  ]= 2. w + 1. w2 - 1. x2 - 2. y - 1. y2 + 1. z2,

1. w - 2. x2 - 1. w x2 - 3. y - 1. x2 y - 4. y2 - 1. w y2 - 1. y3 - 1. x z + 1. w x z + 1. z2 + 1. y z2,

1. w x + 1. x3 + 1. x y + 1. w x y + 1. x y2 + 1. w z - 1. x2 z - 3. y z - 1. w y z - 1. y2 z - 1. x z2 + 1. z3,

-2. w + 1. x2 + 1. w x2 + 2. y - 2. w y + 2. y2 - 2. w x z - 1. z2 + 1. w z2

Now  produce  the  transformation  matrix  AH  adding  back  the  1 in the  second  and  4 component.

In[  ]:= eq = FLTMD [raweq, AH, 3, {x, y, z, w}, {x, y, z}, dTol ]〚1〛
» Initial Hilbert Function {1, 4, 9, 16 }

» Final Hilbert Function {1, 4, 9, 16 }

Out[  ]= 1. - 1. x2 - 1. y2 + 1. z2

which  is exactly  what  we  got  before!

The  point  of this  section  is not  really  about  how  to implicitize  an actual  example  but  just  to emphasize  

the  theorem  that  theoretically  every  rational  parametric  surface  is contained  in a naive  implicit  surface.   

Thus  we  can  apply  the  Jordan-Brouwer  Theorem  of Section  1.1  about  smooth  points.   But  the  plot  at 

the  end  of Section  1.2  shows  there  can  be many  non-smooth  points!
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1.4 The Torus Story
This  example  has  served  as motivation  for  this  book.   Here  I have  a simpler,  but  more  ad-hoc,   method  

for  implicitizing   rational  parametric  functions.   The  theme  of studying  surfaces  by curves  on  the  sur -

face  will  be  a major  technique  in this  book  and  has  been  a major  tool  also  in classical  algebraic  geome -

try.   Some  of the  surfaces  mentioned  in Section  1.1  are  constructed  here.

1.4.1 Preliminaries  

 Before  getting  into  this  I remind  the  reader  that  the  first  method  in the  previous  section  1.3  is based  on  

the  method  in section  3.1.4  of my  Space  Curves  Book  for  finding  implicit  equations  of rationally  parame -

terized  space  curves.   For  degrees   d = 2,3,4  and  5 one  writes  the  curve  in the  form

TransformationFunction [A]td, td-1, …, t
or the  equivalent  

fltMDtd, td-1, …, t, A
for  an appropriate  (d + 1)⨯ (n + 1) transformation  matrix  A.  Here  n = 3.  Essentially  we  are  viewing  the  

parametric  curve  as an image  of the  rational  normal  curve  of degree  d. Then  the  implicit  equation  is 

given  by 

FLTMD[tBasisd, A, m, {x1, x2, … xd}, {x, y, z}, tol]

for  appropriate  m.  O�en  m = d  but  a possibly  smaller  m  might  work  or a larger  m  may  be needed.   

Naive  space  curves  have  2 equations,  rather  than  the  one  for  surfaces,  but  o�en  the  correct  system  of 

equations  for  a rational  parametric  curve  will  not  be naive  and  require  more  than  2 equations  but  for  

our  use  we  may  find  2 equations  that  serve  our  purposes.

One  other  important  preliminary  idea  from  Space  Curves  is that  we  can  approximate  ideals  of algebraic  

spaces  using  Sylvester  matrices.   The  rows  of a Sylvester,  or  other,  matrix  can  be viewed  as the  basis  of 

a subspace  of an appropriate n-space  ℝn where  o�en  n is large.    To  take  the  union  of two  algebraic  

spaces  a row  equivalent  matrix  to the  Sylvester  matrix  of a union  is the  intersection  of the  Sylvester  

matrices  of the  parts.   So  one  of the  main  tools  I will  use  in this  book  is the  following  simple  algorithm  

for  the  intersection  of two  vector  subspaces  of ℝn.  

Note  that  in the  Space  Curve  Book  we  adopt  some  of the  language  of Macaulay.   

Matrices A, B are  called  (Macaulay)  duals  if

1. A B  is defined  and  A B = 0

2. If  v B = 0 then  v  is in the  row  space  of A

3. If  v B = 0 then  v  is in the  row  space  of A

That  is,   A, B are  maximal  satisfying  A B = 0.  It is sufficient  that  the  columns  of B form  the  nullspace  of A 

or the  rows  of A form  the  column  space  of B.   In my  so�ware  if either   A = localDualMatrix[B,tol]  

or B = dualMatrix[A,  tol] then  A,B  are  duals,  in particular  B is the  dual  of A and  A is the  local  dual  
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of B.

Here  let  V , W  be  matrices  with  the  same  number  of columns  whose  row  spaces  are  the  two  vector  

spaces   Let  dV, dW  be the  duals  of V , W  and  dd  the  column  join  of dV, dW .

If v  is in the  intersection  of the  vector  spaces  then   v.dV  = v.dW  = 0 so v.dd=0  and  v is in the  row  space  of 

the  local  dual  of dd.

Conversely,  if v is in the  row  space  of the  local  dual  of dd  then  v. dd  = 0  meaning  v.c  = 0 for  any  column  

of dd.   In  particular  v.dV  = 0, v.dW  =0  so v is in the  row  space  of V and  the  row  space  of W,  hence  in the  

intersection.

Thus  our  algorithm  is

In[  ]:= vectorSpaceIntersection [V_, W_, tol_] := Module [{dV, dW, dd},

dV = dualMatrix [V, tol];

dW = dualMatrix [W, tol];

dd = Join [dV, dW, 2];

localDualMatrix [dd, tol]]

 This  can  be extended  to 3 or more  subspaces  if useful  , see  GlobalFunctionsS.nb

To use  this  to find  the  union  of two  algebraic  sets  we  take  Sylvester  matrices  of the  same  appropriate  

order  for  the  two  sets.   We  then  intersect  the  underlying  row  spaces  to get  a row  matrix  which  we  

multiply  by an  mExpsMD  list  of monomials  to convert  back  to equations.   If necessary  we  find  a smaller  

hBasis  of this  list.    Examples  are  below.

1.4 .2 The Torus

Here  is our  rationally  parametrized  surface  .

In[  ]:= T = 
4 s 1 + t + t2

1 + s2 × 1 + t2
, -

2 × -1 + s2 - t + s2 t - t2 + s2 t2
1 + s2 × 1 + t2

,
1 - t2 × (1 + s^2)

1 + t2 × (1 + s^2)
;

Plotting,  using  a finite  range  instead  of the  {-∞,∞}  theoretical  range,  we  get
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In[  ]:= PT := ParametricPlot3D [T, {t, -10, 10}, {s, -10, 10},

PlotRange → All, Mesh → None, MaxRecursion → 4, PlotStyle → Opacity [.8]]

PT

Out[  ]=

This  seems  to be most  of a torus.

Step 1

We  can  find   curves  on  this  surface  by restricting  to one  variable  by making  the  other  a constant,  in this  

case  we  will  set  t to 0 and  then,  for  later  consistency,  set s  to t.

In[  ]:= ft0 = T /. {t → 0, s → t}

Out[  ]= 
4 t

1 + t2
, -

2 × -1 + t2
1 + t2

, 1

Since  1 =
1+t^2

1+t^2
 we  can  use  the  transformation  matrix

In[  ]:= At0 = {{0, 4, 0}, {2, 0, -2}, {1, 0, 1}, {1, 0, 1}}

Out[  ]= {{0, 4, 0}, {2, 0, -2}, {1, 0, 1}, {1, 0, 1}}

Checking

In[  ]:= fltMD [{t^2, t}, At0]

Out[  ]= 
4 t

1 + t2
,

-2 + 2 t2

1 + t2
, 1
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In[  ]:= Show [PT, ParametricPlot3D [ft0, {t, -20, 20}]]

Out[  ]=

We  find  a basis  by

In[  ]:= ideal1 = FLTMD [tBasis2, At0, 2, {x2, x1}, {x, y, z}, dTol ]

Out[  ]= FLTMD [tBasis2, {{0, 4, 0}, {2, 0, -2}, {1, 0, 1}, {1, 0, 1}}, 2, {x2, x1}, {x, y, z}, dTol ]

Using  the  second,  more  complicated  basis  element  we  see  this  curve  generates  the  surface  
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In[  ]:= Show [ContourPlot3D [ideal1 〚-1〛 ⩵ 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Mesh → None ],

ParametricPlot3D [ft0, {t, -20, 20}, MaxRecursion → 4]]

Out[  ]=

Step 2

We  then  consider  a curve  on  the  torus  by making  s a constant,  we  already  have  variable  t.  Again,  we  

are  working  ad-hoc  so perhaps  a bit  of trial  and  error  is necessary.

In[  ]:= fs2 = T /. {s → 2}

Out[  ]= 
8 × 1 + t + t2
5 × 1 + t2

, -
2 × 3 + 3 t + 3 t2

5 × 1 + t2
,
1 - t2

1 + t2


A transformation  matrix  is 

In[  ]:= As2 = {{8, 8, 8}, {-6, -6, -6}, {-5, 0, 5}, {5, 0, 5}};

Checking

In[  ]:= fltMD [{t^2, t}, As2]

Out[  ]= 
8 + 8 t + 8 t2

5 + 5 t2
,

-6 - 6 t - 6 t2

5 + 5 t2
,
5 - 5 t2

5 + 5 t2

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In[  ]:= Show [PT, ParametricPlot3D [{fs2, ft0}, {t, -20, 20}, PlotStyle → Blue, MaxRecursion → 4]]

Out[  ]=

These  curves  are  on  the  torus  as the  plot  shows,  but  we  want  to see  what  sort  of surface  is determined  

by these  curves  alone.   We  now  use  ideas  of 1.4.1.

In[  ]:= ideal2 = FLTMD [tBasis2, As2, 2, {x2, x1}, {x, y, z}, dTol ]

Out[  ]= FLTMD [tBasis2, {{8, 8, 8}, {-6, -6, -6}, {-5, 0, 5}, {5, 0, 5}}, 2, {x2, x1}, {x, y, z}, dTol ]

We  use  m = 4 because  we  think  the  torus  will  have  an equation  of degree  4.

In[  ]:= syl1 = sylvesterMD [ideal1, 4, {x, y, z}];

syl2 = sylvesterMD [ideal2, 4, {x, y, z}];

In[  ]:= intersec2 = vectorSpaceIntersection [syl1, syl2, 1.*^-10 ];

Length [intersec2 ]

Out[  ]= 18

This  says  we  will  get  a basis  of 18 polynomials,  which  is too  cumbersome.   So  we  do

In[  ]:= basis2 = hBasisMD [intersec2 .mExpsMD [4, {x, y, z}], 4, {x, y, z}, 1.*^-10 ]

Out[  ]= hBasisMD intersec2 .mExpsMD [4, {x, y, z}], 4, {x, y, z}, 1. × 10-10 

to get  a basis  of 4 polynomials  .  Plotting  the  last  one  w2  have
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In[  ]:= Show [ContourPlot3D [basis2 〚-1〛 ⩵ 0, {x, -2, 3}, {y, -2, 2}, {z, -2, 2}, Mesh → None ],

ParametricPlot3D [{fs2, ft0}, {t, -20, 20}, PlotStyle → Blue, MaxRecursion → 4]]

Out[  ]=

This  is just  the  surface  ts2  of section  1.1.   We  saw  that  this  is the  union  of a plane  with  an infinite  cylin -

der  and  the  intersection  line  was  regular  but  not  smooth  so ContourPlot3D can  not  plot  this  correctly,  

but  the  upper  circle  is in ts2.

Step 3

We  now  add  another  vertical  circle  .

In[  ]:= ftp5 = Expand [T /. {t → .5, s → t}]

Out[  ]= 
5.6 t

1 + t2
,

2.8

1 + t2
-
2.8 t2

1 + t2
, 0.6

Putting  the  last  component  over  the  common  denominator  gives  transformation  matrix

In[  ]:= Atp5 = {{0, 5.6, 0}, {-2.8, 0, 2.8}, {.6, 0, .6}, {1, 0, 1}};

In[  ]:= fltMD [{t^2, t}, Atp5 ]

Out[  ]= 
5.6 t

1. + 1. t2
,
2.8 - 2.8 t2

1. + 1. t2
,
0.6 + 0.6 t2

1. + 1. t2

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In[  ]:= Show [PT,

ParametricPlot3D [{ftp5, fs2, ft0}, {t, -20, 20}, PlotStyle → Blue, MaxRecursion → 4]]

Out[  ]=

In[  ]:= ideal3 = FLTMD [tBasis2, Atp5, 2, {x2, x1}, {x, y, z}, dTol ]

» Initial Hilbert Function {1, 3, 5}

» Final Hilbert Function {1, 3, 5}

Out[  ]= 1. - 1.66667 z, -0.0459184 x2 - 0.0459184 y2 + 1. z2

In[  ]:= syl3 = sylvesterMD [ideal3, 4, {x, y, z}];

syl3b = sylvesterMD [basis2, 4, {x, y, z}];

intersect3 = vectorSpaceIntersection [syl3, syl3b, 1.*^-10 ];

Length [intersect3 ]

Out[  ]= 12

In[  ]:= basis3 = hBasisMD [intersect3 .mExpsMD [4, {x, y, z}], 4, {x, y, z}, 1.*^-10 ]

» Initial Hilbert Function {1, 3, 6, 7, 6}

» Final Hilbert Function {1, 3, 6, 7, 6}

Out[  ]= -10.2 x + 0.75 x3 - 13.6 y + 1. x2 y + 0.75 x y2 + 1. y3 + 7.2 x z + 9.6 y z,

0.45 x + 0.6 y - 1.2 x z - 1.6 y z + 0.75 x z2 + 1. y z2,

-6. + 8.125 x - 0.625 x3 - 0.625 x y2 + 3. z - 5. x z + 1. x2 z + 1. y2 z - 2. z2 - 0.625 x z2 + 1. z3,

10.752 - 6.4 x - 11.464 x2 + 0.64 x3 + 1. x4 + 1.536 y2 + 0.64 x y2 +

1. x2 y2 + 2.88 x2 z - 5.12 y2 z + 3.584 z2 + 3.84 x z2 + 1. x2 z2
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In[  ]:= Show [ContourPlot3D [basis3 〚-1〛 ⩵ 0, {x, -4, 3}, {y, -4, 4}, {z, -2, 2}, Mesh → None ],

ParametricPlot3D [{ftp5, fs2, ft0}, {t, -20, 20}, PlotStyle → Blue, MaxRecursion → 4]]

Out[  ]=

Step 4.

We  find  another  vertical  circle

In[  ]:= fs4 = T /. {s → 4}

Out[  ]= 
16 × 1 + t + t2
17 × 1 + t2

, -
2 × 15 + 15 t + 15 t2

17 × 1 + t2
,
1 - t2

1 + t2


In[  ]:= As4 = {{16, 16, 16}, {-30, -30, -30}, {-17, 0, 17}, {17, 0, 17}};

Checking  :

In[  ]:= fltMD [{t^2, t}, As4]

Out[  ]= 
16 + 16 t + 16 t2

17 + 17 t2
,

-30 - 30 t - 30 t2

17 + 17 t2
,
17 - 17 t2

17 + 17 t2

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In[  ]:= Show [PT, ParametricPlot3D [{ftp5, fs2, ft0}, {t, -20, 20}, PlotStyle → Blue ],

ParametricPlot3D [fs4, {t, -20, 20}, PlotStyle → Green ]]

Out[  ]=

Continuing  as above

In[  ]:= ideal4 = FLTMD [tBasis2, As4, 2, {x2, x1}, {x, y, z}, dTol ]

» Initial Hilbert Function {1, 3, 5}

» Final Hilbert Function {1, 3, 5}

Out[  ]= 1.875 x + 1. y, 1. - 2.83333 x + 1.50521 x2 + 0.333333 z2

In[  ]:= syl4 = sylvesterMD [ideal4, 4, {x, y, z}];

syl4b = sylvesterMD [basis3, 4, {x, y, z}];

intersect4 = vectorSpaceIntersection [syl4, syl4b, 1.*^-10 ];

Length [intersect4 ]

Out[  ]= 7

In[  ]:= basis4 = hBasisMD [intersect4 .mExpsMD [4, {x, y, z}], 4, {x, y, z}, 1.*^-10 ]

» Initial Hilbert Function {1, 3, 6, 9, 9}

» Final Hilbert Function {1, 3, 6, 9, 9}

Out[  ]= -6. + 4.33333 x - 0.333333 x3 - 5.05556 y + 0.388889 x2 y - 0.333333 x y2 + 0.388889 y3 + 3. z -

2.66667 x z + 1. x2 z + 3.11111 y z + 1. y2 z - 2. z2 - 0.333333 x z2 + 0.388889 y z2 + 1. z3,

-6.4 + 2.03175 x - 2.92619 x2 - 0.203175 x3 + 0.154762 x4 - 2.37037 y - 13. x y + 0.237037 x2 y +

1. x3 y - 0.914286 y2 - 0.203175 x y2 + 0.154762 x2 y2 + 0.237037 y3 + 1. x y3 + 4.28571 x2 z +

8. x y z + 3.04762 y2 z - 2.13333 z2 - 1.21905 x z2 + 0.154762 x2 z2 + 1.42222 y z2 + 1. x y z2,

-19.125 x2 + 1.40625 x4 - 35.7 x y + 2.625 x3 y - 13.6 y2 + 2.40625 x2 y2 +

2.625 x y3 + 1. y4 + 13.5 x2 z + 25.2 x y z + 9.6 y2 z,

16.8 - 5.33333 x + 8.525 x2 + 0.533333 x3 - 0.40625 x4 + 6.22222 y + 35.7 x y -

0.622222 x2 y - 2.625 x3 y + 3. y2 + 0.533333 x y2 - 0.40625 x2 y2 - 0.622222 y3 - 2.625 x y3 -

13.5 x2 z - 25.2 x y z - 9.6 y2 z + 5.6 z2 + 3.2 x z2 + 1. x2 z2 - 3.73333 y z2 + 1. y2 z2
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In[  ]:= Length [basis4 ]

Out[  ]= 4

As before  the  last  equation  gives  an example  of a surface  of degree  4 containing  these  4 curves  .

In[  ]:= Show [ContourPlot3D [basis4 〚-1〛 ⩵ 0, {x, -3, 4}, {y, -3, 3}, {z, -3, 3}, Mesh → None ],

ParametricPlot3D [{fs4, ftp5, fs2, ft0}, {t, -20, 20}, PlotStyle → Blue ]]

Out[  ]=

Step 5.

Now  we  add  another  vertical  circle  .

In[  ]:= fsp5 = T /. {s → .5}

Out[  ]= 
1.6 × 1 + t + t2

1 + t2
, -

1.6 × -0.75 - 0.75 t - 0.75 t2
1 + t2

,
1 - t2

1 + t2

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In[  ]:= Show [PT, ParametricPlot3D [{fs4, ftp5, fs2, ft0}, {t, -20, 20}, PlotStyle → Blue ],

ParametricPlot3D [fsp5, {t, -20, 20}, PlotStyle → Green ]]

Out[  ]=

In[  ]:= Asp5 = {{1.6, 1.6, 1.6}, {1.2, 1.2, 1.2}, {-1, 0, 1}, {1, 0, 1}};

Checking

In[  ]:= fltMD [{t^2, t}, Asp5 ]

Out[  ]= 
1.6 + 1.6 t + 1.6 t2

1. + 1. t2
,
1.2 + 1.2 t + 1.2 t2

1. + 1. t2
,
1. - 1. t2

1. + 1. t2


In[  ]:= ideal5 = FLTMD [tBasis2, Asp5, 2, {x2, x1}, {x, y, z}, dTol ]

» Initial Hilbert Function {1, 3, 5}

» Final Hilbert Function {1, 3, 5}

Out[  ]= -0.75 x + 1. y, 1. - 1.66667 x + 0.520833 x2 + 0.333333 z2

In[  ]:= syl5 = sylvesterMD [ideal5, 4, {x, y, z}];

syl5b = sylvesterMD [basis4, 4, {x, y, z}];

intersect5 = vectorSpaceIntersection [syl5, syl5b, 1.*^-10 ];

Length [intersect5 ]

Out[  ]= 3

In[  ]:= basis5 = hBasisMD [intersect5 .mExpsMD [4, {x, y, z}], 4, {x, y, z}, 1.*^-10 ]
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» Initial Hilbert Function {1, 3, 6, 10, 12 }

» Final Hilbert Function {1, 3, 6, 10, 12 }

Out[  ]= 40.5 x - 47.5313 x2 + 3.65625 x4 - 13. y2 + 4.65625 x2 y2 + 1. y4 - 20.25 x z + 29.25 x2 z -

6.75 x3 z + 8. y2 z - 6.75 x y2 z + 13.5 x z2 + 3.65625 x2 z2 + 1. y2 z2 - 6.75 x z3,

-11.25 x + 15.2344 x2 - 1.17188 x4 - 6. y + 8.125 x y - 0.625 x3 y - 1.17188 x2 y2 -

0.625 x y3 + 5.625 x z - 9.375 x2 z + 1.875 x3 z + 3. y z - 5. x y z + 1. x2 y z + 1.875 x y2 z +

1. y3 z - 3.75 x z2 - 1.17188 x2 z2 - 2. y z2 - 0.625 x y z2 + 1.875 x z3 + 1. y z3,

9. - 81. x + 85.0625 x2 - 6.3125 x4 + 16. y2 - 7.3125 x2 y2 - 1. y4 + 40.5 x z - 58.5 x2 z +

13.5 x3 z - 16. y2 z + 13.5 x y2 z + 6. z2 - 27. x z2 - 5.3125 x2 z2 + 13.5 x z3 + 1. z4

In[  ]:= Show [ContourPlot3D [basis5 〚-1〛 ⩵ 0, {x, -3, 4}, {y, -3, 3}, {z, -3, 3}, Mesh → None ],

ParametricPlot3D [{fsp5, fs4, ftp5, fs2, ft0}, {t, -20, 20}, PlotStyle → Blue ]]

Out[  ]=

We  will  name  this  surface  ts5  for  later  use  .

Step 6.

One  more  horizontal  circle  .

In[  ]:= ft2 = Expand [N[T /. {t → 2, s → t}]]

Out[  ]= 
5.6 t

1. + t2
,

2.8

1. + t2
-
2.8 t2

1. + t2
, -0.6
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In[  ]:= Show [PT, ParametricPlot3D [{fsp5, fs4, ftp5, fs2, ft0}, {t, -20, 20}, PlotStyle → Blue ],

ParametricPlot3D [ft2, {t, -20, 20}, PlotStyle → Green ]]

Out[  ]=

At2 = {{0, 5.6, 0}, {-2.8, 0, 2.8}, {-.6, 0, -.6}, {1, 0, 1}};

fltMD [{t^2, t}, At2]

Out[  ]= 
5.6 t

1. + 1. t2
,
2.8 - 2.8 t2

1. + 1. t2
,

-0.6 - 0.6 t2

1. + 1. t2


In[  ]:= ideal6 = FLTMD [tBasis2, At2, 2, {x2, x1}, {x, y, z}, dTol ]

» Initial Hilbert Function {1, 3, 5}

» Final Hilbert Function {1, 3, 5}

Out[  ]= 1. + 1.66667 z, -0.0459184 x2 - 0.0459184 y2 + 1. z2

In[  ]:= syl6 = sylvesterMD [ideal6, 4, {x, y, z}];

syl6b = sylvesterMD [basis5, 4, {x, y, z}];

intersect6 = vectorSpaceIntersection [syl6, syl6b, dTol ];

Length [intersect6 ]

Out[  ]= 1

Since  the  length  is 1 we  do  not  need  an hBasis  calculation

In[  ]:= Teq = Chop [intersect6 .mExpsMD [4, {x, y, z}], dTol ]〚1〛
Out[  ]= 0.493939 - 0.548821 x2 + 0.0548821 x4 - 0.548821 y2 + 0.109764 x2 y2 +

0.0548821 y4 + 0.329293 z2 + 0.109764 x2 z2 + 0.109764 y2 z2 + 0.0548821 z4

We  check  that  this  is a surface  containing  our  original  parameterization

In[  ]:= Chop [Simplify [Teq /. Thread [{x, y, z} → T]], 1.*^-10 ]

Out[  ]= 0

Simplifying  a little  more

In[  ]:= Teq = Expand 9 Teq  Teq〚1〛
Out[  ]= 9. - 10. x2 + 1. x4 - 10. y2 + 2. x2 y2 + 1. y4 + 6. z2 + 2. x2 z2 + 2. y2 z2 + 1. z4
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In[  ]:= Teq = FromCoefficientRules [Normal [Round [CoefficientRules [Teq, {x, y, z}]]], {x, y, z}]

Out[  ]= 9 - 10 x2 + x4 - 10 y2 + 2 x2 y2 + y4 + 6 z2 + 2 x2 z2 + 2 y2 z2 + z4

we actually  get  an integer  coefficient  surface.

In[  ]:= Simplify [Teq /. Thread [{x, y, z} → T]]

Out[  ]= 0

In[  ]:= Show [ContourPlot3D [Teq ⩵ 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3},

Mesh → None, ContourStyle → Opacity [.8]], ParametricPlot3D [

{ft2, fsp5, fs4, ftp5, fs2, ft0}, {t, -20, 20}, PlotStyle → Blue, MaxRecursion → 6]]

Out[  ]=

Thus  we  have  implicitized  our  torus!   In other  words  the  torus  Teq  is the  only  surface  of degree  4 contain -

ing  these  6 curves.
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1.5 Curves in surfaces
Our  calculation  shows  that  one  can  find  out  a lot  about  a curve  by studying  curves  in the  surface  .  This  

is a classical  idea  where  these  curves  are  called  divisors.  However  rarely  did  one  see  an actual  example.  

In our  own,  explicit,  way  we  will  find  these  curves  a major  technique  for  studying  surfaces.

1.5.1 Curves in rational  parametric  surfaces.

We  study  these  first  since  since  they  are  somewhat  easier.   Since  our  parameter  space  is just  a plane  

every  plane  curve  li�s  to a curve  in the  parameterized  surface.   If our  parameterization  is not  one-to-

one  the  curve  may  be collapsed,  or if the  parameterization  has  non-regular  points  new  singularities  

may  be added,  so the  curve  may  not  look  exactly  like  it looked  in the  plane.  The  method  is easy,  how -

ever  there  are  two  cases.

We  will  use  the  torus  in the  previous  section  as we  now  know  both  a parametric  and  implicit  equation.  

In[  ]:= Tor = 
4 s 1 + t + t2

1 + s2 × 1 + t2
, -

2 × -1 + s2 - t + s2 t - t2 + s2 t2
1 + s2 × 1 + t2

,
1 - t2

1 + t2
;

TorEq = 9 - 10 x2 + x4 - 10 y2 + 2 x2 y2 + y4 + 6 z2 + 2 x2 z2 + 2 y2 z2 + z4;

We  can  just  substitute  our  plane  parameterization  for  the  parameters.   Here  is an example  from  my  

Plane  Curve  Book  section  7.3.   We  change  the  parameter  to u so it won't  conflict  with  s, t.

In[  ]:= F1 = {3 u - u^2 + 1, -2 u + u^2 - 2} / (1 + u + u^2)

Out[  ]= 
1 + 3 u - u2

1 + u + u2
,

-2 - 2 u + u2

1 + u + u2


This  is an ellipse  .

In[  ]:= A1 = {{-1, 3, 1}, {1, -2, -2}, {1, 1, 1}};

F1eq = FLTMD [tBasis2, A1, 2, {x2, x1}, {x, y}, dTol ]〚1〛
» Initial Hilbert Function {1, 3, 5}

» Final Hilbert Function {1, 3, 5}

Out[  ]= 1. - 6. x - 3. x2 - 6. y - 6. x y - 4. y2

Note  the  error  in the  Plane  Curve  book!
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In[  ]:= Show [ContourPlot [F1eq ⩵ 0, {x, -4, 2},

{y, -2, 2}, ContourStyle → Directive [Thick, Orange ]],

ParametricPlot [F1, {u, -20, 20}, PlotStyle → Dashed ]]

Out[  ]=

-4 -3 -2 -1 0 1 2

-2

-1

0

1

2

We  then  get  a space  curve

In[  ]:= TF1 = Simplify [Tor /. {s → F1〚1〛, t → F1〚2〛}]

Out[  ]= -
6 × -1 - 3 u + u2 × 1 + u + u2 × 1 + 2 u - u3 + u4

1 + 4 u + 5 u2 - 2 u3 + u4 × 5 + 10 u + 3 u2 - 2 u3 + 2 u4
,

12 u -1 - 3 u + 5 u3 - 3 u5 + 2 u6
1 + 4 u + 5 u2 - 2 u3 + u4 × 5 + 10 u + 3 u2 - 2 u3 + 2 u4

,
3 × -1 - 2 u + u2 + 2 u3

5 + 10 u + 3 u2 - 2 u3 + 2 u4


This  is somewhat  complicated  and  we  end  up  with  a curve  of degree  8, the  product  of the  degrees.   This  

is why  no-one  attempts  this  by  hand.   Two  views  are  given.

Show [ContourPlot3D [TorEq ⩵ 0, {x, -3, 3}, {y, -3, 3}, {z, -2, 2}, Mesh → None ],

ParametricPlot3D [TF1, {u, -20, 20}, PlotStyle → Blue ]]

In[  ]:=  , 

1.5.2 Curves in Implicit  Surface

Curves  in implicit  surfaces  can  easily  be  defined  by intersecting   with  another  implicit  surface.   In this  

case  we  get  a naive  space  curve  as defined  in my  Space  Curve  Book.   Possibly  this  curve  is empty.   In 

other  cases  we  have  to use  the  techniques  of that  book  to describe  the  curve.   Typically  the  degree  of 

this  curve  will  be  the  product  of the  two  degrees  so can  be large.   As  in the  Torus  example  of Section  1.4  

we o�en  use  a plane  as our  second  surface  to preserve  the  degree.   For  example,  when  our  surface  is 
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quadratic  using  a second  quadratic  surface  we  already  have  a hard  problem  to describe  the  curve,  this  

is the  Quadratic  Surface  Intersection  problem  of Section  3.2  of the  Space  Curve  Book.   

Now  we  introduce  the  important  Fermat  surface

In[  ]:= fermat = x^3 + y^3 + z^3 + 1;

We  will  make  a curve  on  fermat by intersecting  with  the  sphere

In[  ]:= sph = (x + 1)^2 + y^2 + z^2 - 1;

In[  ]:= Show [ContourPlot3D [{fermat ⩵ 0}, {x, -2, 1}, {y, -2, 2}, {z, -2, 2}, Mesh → None ],

ContourPlot3D [sph ⩵ 0, {x, -2, 2}, {y, -2, 2}, {z, -1, 2},

Mesh → None, ContourStyle → Directive [Opacity [.6], Pink ]]]

Out[  ]=

To plot  we  need  to find  some  points  on  the  intersection  curve

In[  ]:= cp = criticalPoints3D [{fermat, sph}, {x, y, z}]

Out[  ]= {{-1.24155, 0., 0.970389 }, {-0.606468 , -0.919311 , 0.}, {-1.20364, 0.458357 , 0.865123 },

{-0.713712 , -0.75704, -0.587307 }, {-1.24155, 0.970389 , 0.}, {-0.606468 , 0., -0.919311 }}

We  can  now  find  points  on  the  curve  by

In[  ]:= P1 = pathFinder3D [{fermat, sph}, cp〚1〛, cp〚6〛, .2, {x, y, z}]

Out[  ]= {{-1.24155, 0., 0.970389 },

{-1.23247, 0.195949 , 0.952659 }, {-1.21237, 0.384334 , 0.898436 },

{-1.19336, 0.557564 , 0.8073 }, {-1.18662, 0.707692 , 0.681428 },

{-1.19629, 0.827291 , 0.526364 }, {-1.21646, 0.911499 , 0.349736 },

{-1.23537, 0.958754 , 0.159351 }, {-1.24116, 0.969773 , -0.0371887 },

{-1.22443, 0.946568 , -0.231607 }, {-1.17909, 0.892284 , -0.414435 },

{-1.10329, 0.811157 , -0.575635 }, {-1.00059, 0.707695 , -0.706518 },

{-0.880796 , 0.584756 , -0.802403 }, {-0.760452 , 0.441632 , -0.864626 },

{-0.663004 , 0.275756 , -0.900218 }, {-0.606468 , 0., -0.919311 }}
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In[  ]:= P2 = pathFinder3D [{fermat, sph}, cp〚1〛, cp〚6〛, .2, {x, y, z}, dir → -1]

Out[  ]= {{-1.24155, 0., 0.970389 },

{-1.22964, -0.195509 , 0.953437 }, {-1.18999, -0.381293 , 0.904722 },

{-1.11984, -0.547315 , 0.828302 }, {-1.02166, -0.684434 , 0.728753 },

{-0.90404, -0.787017 , 0.609422 }, {-0.782202 , -0.855196 , 0.470323 },

{-0.67842, -0.895117 , 0.30879 }, {-0.617386 , -0.915248 , 0.126204 },

{-0.609214 , -0.917986 , -0.067741 }, {-0.640588 , -0.896043 , -0.260633 },

{-0.685277 , -0.839144 , -0.443606 }, {-0.716363 , -0.741066 , -0.608581 },

{-0.715878 , -0.604332 , -0.744351 }, {-0.684168 , -0.438983 , -0.841157 },

{-0.639503 , -0.255812 , -0.896996 }, {-0.606468 , 0., -0.919311 }}

In[  ]:= Show [ContourPlot3D [fermat ⩵ 0, {x, -2, 1}, {y, -2, 2}, {z, -2, 2}, Mesh → None ],

Graphics3D [{{Blue, Thick, Line [P1]}, {Blue, Thick, Line [P2]}}]]

Out[  ]=

1.5.3   Implicit  Surface  and Parametric  Curve

A third  possibility  is to use  a parametric  curve  with  the  implicit  surface.   However  this  requires  some  

cleverness  as there  is no  general  method  for  doing  this.  For  example  one  may  observe  that  the  that  the  

Fermat  surface  above  contains  the  parametric  lines   {t, -t, -1}, {t, -1, t} and  {-1, t, -t}  in this  surface.   

We  will  see  later  there  are  no  other  real  lines  in this  surface.

In[  ]:= fermat /. Thread [{x, y, z} → {t, -t, -1}]

Out[  ]= 0
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In[  ]:= Show [ContourPlot3D [fermat ⩵ 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Mesh → None ],

ParametricPlot3D [{{t, -t, -1}, {t, -1, -t}, {-1, t, -t}}, {t, -2, 2}, PlotStyle → Blue ]]

Out[  ]=

1.5.4  Some  Code

For  the  reader's  convenience  we  give  the  code  for  the  two  routines  we  used  in 1.5.2,  the  are,  of course  

in GlobalFunctionsS.nb.  But  some  readers  of the  Space  Curve  book  may  notice  that  pathFinder3D  has  

changed,  new  options  are  allowed,  in particular  the  option  dir→-1 which  allowed  us to change  

directions.

In[  ]:= criticalPoints3D [{f_, g_}, {x_, y_, z_}] := Module [{J, ob},

ob = RandomReal [{.7, 1.3}, 3].{x^2, y^2, z^2};

J = D[{f, g, ob}, {{x, y, z}}];

{x, y, z} /. NSolve [{f, g, N[Det[J]]}, {x, y, z}, Reals ]]
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In[  ]:= Options [pathFinder3D ] = {maxit → 30, tol → 1.*^-8, dir → 1};

pathFinder3D [{f_, g_}, p_, q_, s_, {x_, y_, z_}, OptionsPattern []] :=

Module [{k, p0, p1, tv1, tv, L},

p0 = p;

L = Reap [Sow[p];

k = 0;

While [Norm [q - p0] > 2 s && k < OptionValue [maxit ],

tv1 = OptionValue [dir] *

tangentVector3D [{f, g}, p0, {x, y, z}, tol → OptionValue [tol]];

If[tv1.(q - p0) > 0, tv = tv1, tv = -tv1];

p0 = closestPoint3D [{f, g}, p0 + s * tv, {x, y, z}];

Sow[p0];

k++];

If[k ≥ OptionValue [maxit ], Print ["Warning, iteration limit reached"]];

Sow[q]];

L〚2, 1〛];

1.5.5   Ovals  and Pseudo-Lines

In both  my   Plane  Curve  Book  and  Space  Curve  Book  I discuss  my  Fundamental  Theorem   as  well  as  

ovals  and  pseudo-lines  which  make  most  sense  for  non-singular  curves.   The  Euler  graph  of a curve  

may  not  be connected,  in the  graph  theory  sense.   A connected  component  of the  graph  then  refers  to a 

closed  topological  subcurve  of the  curve  which  may  or may  not  be  an entire  algebraic  curve.   This  

subcurve  will  be  an oval if it meets  the  infinite  plane  in an even  number  of points,  a pseudo-line if it 

meets  the  infinite  plane  in an odd  number  of points  counting  multiplicity  in both  cases.   Actually  any  

fixed  plane  of projective  space  can  be used  instead  of the  infinite  plane,  so any  closed  subcurve  which  

misses  some  plane  entirely  is an oval,  in particular  bounded  closed  curves  are  ovals.   

As an example  the  curve  in the  fermat surface  of section  1.5.2  is an oval  whereas  the  lines  in 1.5.3  are,  of 

course,  pseudo-lines.   Consider  the  surface  from  Section  1.1

In[  ]:= ts3 = 1.752 - 6.4 x - 11.464 x2 + 0.64 x3 + x^4 + 1.536 y2 +

0.64 x y2 + x2 y2 + 2.88 x^2 z - 5.12 y^2 z + 3.584 z2 + 3.84 x z2 + x2 z2;

We  intersect  this  with  the  plane  z = -1 and  get  two  ovals  as shown  in the  plot  in red  and  green.   We  

suppress  the  work.
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Neither  oval  is a curve  alone,  but  the  union  is the  naive  space  curve  {ts3, z + 1}.  We  had  to use  path  

finding  to draw  these.   

There  is a new  difference  between  these  ovals.   The  red  oval  is null  homotopic   which  means  that  if one  

thinks  of this  as a ring  on  a finger  then  it can  be slipped  off  without  hurting  the  surface.   More  precisely  

it can  be moved  continuously  on  the  surface  until  it degenerates  into  a point  at the  bottom.   The  reader  

should  note  here  that  we  are  purposely  being  heuristic.   On  the  other  hand  the  green  oval  can  not  be 

obviously  deformed  to a point  or “removed”.   Another  difference  is that  the  red  oval  separates the  

surface  into  the  part  on  that  finger  which  is above  the  oval  and  the  small  part  below  the  oval.   Again  it is 

not  clear  from  this  picture  if the  green  oval  does  this,  we  will  have  to wait  until  later  when  we  treat  

these  surfaces  as projective  surfaces.   The  surface  in Section  1.4  called  ts5 (in  step  5) gives  a better  

picture,  work  suppressed.   

ts5 = 9 - 81 x +
1361 x2

16
-
101 x4

16
+ 16 y2 -

117 x2 y2

16
- y4 +

81 x z

2
-

117 x2 z

2
+
27 x3 z

2
- 16 y2 z +

27

2
x y2 z + 6 z2 - 27 x z2 -

85 x2 z2

16
+
27 x z3

2
+ z4;
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Here  the  green  oval,  a subcurve  of the  naive  curve  {ts5, y} , clearly  does  not  separate  this  surface.   Of  

course  our  6 curves  on  the  torus  in Section  1.4  also  do  not  separate  the  torus.

We  also  note  from  the  torus  example  that  the  3 horizontal  curves  each  meet  the  three  vertical  curves  in 

exactly  one  point.   This  is in stark  difference  where  any  algebraic  curve  meets  an oval  in an even  num -

ber  of points  by multiplicity.   That  property  of an oval  was  a crucial  step  in our  proof  of Harnak’s Theo -

rem,  but  it not  true  in the  surface  case.   The  other  difference  is that,  in general,  ovals  do  not  have  an 

inside  and  outside  like  plane  ovals.   Some,  like  the  end  of the  finger  of ts3  do,  that  is,  the  end  part  is 

topologically  equivalent  to a disk  while  the  other  part  is not.

An example  here  is the  sphere  which,  if anything,  has  two  interiors  when  cut  by the  equator.   The  

equator  is clearly  null-homotopic  and  can  be deformed  to either  the  north  or south  poles.

In[  ]:= sphere = x^2 + y^2 + z^2 - 1;

equator = 
2 t

1 + t^2
,
1 - t^2

1 + t^2
, 0;

46     SSchapter1v2.nb



In[  ]:= Show [ContourPlot3D [sphere ⩵ 0, {x, -1.5, 1.5}, {y, -1.5, 1.5}, {z, -1.5, 1.5},

Mesh → None ], ParametricPlot3D [equator, {t, -20, 20}, PlotStyle → Blue ]]

Out[  ]=

In summary,  there  are  three  kinds  of closed  curves/ subcurves.  The  pseudo-lines,  the  non-null-homo -

topic  ovals  and  the  null-homotopic  ovals.   The  first  two  do  not  separate  a surface  into  connected  

components  while  he third   does  separate  the  surface.   O�en  we  will  call  a non-null-homotopic  oval  an 

essential  oval.
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1.6 Rational Points and Rational Surfaces
We  have  been  discussing  rationally  parameterized  surfaces,  Section  2. Here  we  make  the  distinction  

between  these  and  Rational  surfaces,  note  the  capital  R.   These  are  rationally  parameterized  surfaces  

with  the  additional  property  that  the  coefficients  of all  the  polynomials  in the  numerators  and  denomi -

nators  have  rational,  equivalently  integer,  coefficients.   In previous  sections  most  of my  examples  are  

of this  type,  but  given  my  wide  use  of Mathematica  machine  numbers  it would  certainly  be  permissible  

to use  a non-rational  machine  number  as a coefficient.

An observation  is that  because   a Rational  parameterization  has  only  rational  coefficients  then  every  

rational  value  of the  parameters  gives  a rational  point,  that  is a point  where  all  components  are  ratio -

nal  numbers.   For  example  for  the  torus

In[  ]:= Tor = 
4 s 1 + t + t2

1 + s2 × 1 + t2
, -

2 × -1 + s2 - t + s2 t - t2 + s2 t2
1 + s2 × 1 + t2

,
1 - t2 × 1 + s2
1 + t2 × 1 + s2

;

if one  takes,  say  t =
13

7
, s =

21

4
 then

In[  ]:= p = Tor /. {s → 21 / 4, t → 13 / 7}

Out[  ]= 
51 912

49 813
, -

131 325

49 813
, -

60

109


one  gets  this  horrible  denominator  but  none-the-less  a rational  number.   We  don’t  notice  since  we  

work  numerically  and  the  point  appears  as

In[  ]:= N[p]

Out[  ]= {1.04214, -2.63636, -0.550459 }

which  looks  like  any  other  point.   But  we  have  illustrated  the  following  fact:

The set of rational points in a rational surface is dense.

The  precise  meaning  is that  for  any  point  on  the  rational  surface  and  any  ϵ > 0 there  is a rational  point  

within  euclidean  distance  ϵ of  that  point.   This  also  works  for  a rational  curve  which  implies,  using  the  

fact  that  the  circle  x2 + y2 - 1 is rational ,  that  any  right  triangle  is arbitrarily  close  to a right  triangle  

with  rational  sides.   If the  early  mathematicians  knew  this  there  would  be no  need  for  irrational  num -

bers.   But  of course  Euclid  never  thought  about  fractions  like  

In[  ]:= -p〚2〛

Out[  ]=

131 325

49 813

We  may  then  ask  the  question  about  a general  surface:  are  there  many  rational  points?   For  curves  with  

only  rational  coefficients  Gerd Faltings  proved  in 1983  a 1922  conjecture  of Louis  Mordell  that  if the  

genus  is 2 or greater  there  can  only  be finitely  many  rational  points.   It turns  out  that  this  is more  

complicated  for  surfaces.   Here  is one  of many  places  where  algebraic  geometry  meets  number  theory.

The  Fermat  surface  used  in the  previous  section  is a good  example.   This  is a surface  that  is known  to 

not  be  rational.   Yet  we  noticed  that  there  are  3 rational  lines,  {t, -t, -1}, {t, -1, -t}, {-1, t, -t}.  Thus  
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plugging  in any  rational  value  for  t gives  a rational  point  of the  surface.   So  there  are  infinitely  many  

rational  points  in this  surface.   Are  there  others?

We  can  experiment  with  Mathematica  .  A Diophantine  problem  is to find  integer  solutions  to a polyno -

mial  equation  with  integer  coefficients.   Mathematica  has  some  good  algorithms  to find  solutions  to 

these  problems.  A general  routine  is the  build  in FindInstance.  In this  case  we   can  use  it as follows.   

We  start  with  the  equation  of the  Fermat  surface

In[  ]:= fermat = x^3 + y^3 + z^3 + 1;

To get  rational  solutions  we  homogenize  this  by  replacing  1 by a new  variable  w  which  we  will  use  as a 

denominator.

In[  ]:= fermatH = x^3 + y^3 + z^3 + w^3;

In[  ]:= FindInstance [fermatH ⩵ 0, {x, y, z, w}, Integers ]

Out[  ]= {{x → 0, y → 0, z → 0, w → 0}}

That  was  rather  obvious,  but  doesn’t  actually  give  a rational  solution,  try  again.

In[  ]:= FindInstance [fermatH ⩵ 0 && w ≠ 0, {x, y, z, w}, Integers ]

Out[  ]= {{x → 1, y → -1, z → -1, w → 1}}

Still  quite  obvious  but  gives  {1, -1, 1}, a point  in one  of our  lines.   Lets  try  for  a point  not  on  one  of our  

lines.

In[  ]:= FindInstance [fermatH ⩵ 0 && (x + y) (x + z) (y + z) ≠ 0, {x, y, z, w}, Integers ]

Out[  ]= {{x → 12, y → 1, z → -9, w → -10}}

Now  this  is interesting,  the  point - 12

10
, -

1

10
,

-9

-10
 is in our  surface:

In[  ]:= fermat /. Thread {x, y, z} → -
12

10
, -

1

10
,

-9

-10


Out[  ]= 0

In principal,  FindInstance will  give  a desired  number  of solutions,  but  for  this  problem  it will  not.

In[  ]:= FindInstance [fermatH ⩵ 0 && (x + y) (x + z) (y + z) ≠ 0, {x, y, z, w}, Integers , 2]

FindInstance : The methods available to FindInstance are insufficient to find the requested instances or prove

they do not exist .

Out[  ]= FindInstance w3 + x3 + y3 + z3 ⩵ 0 && (x + y) (x + z) (y + z) ≠ 0, {x, y, z, w}, ℤ, 2

so we  must  make  do  with  one  solution  at a time,  even  though  permutations  of the  coordinates  will  give  

another  solution  due  to the  symmetry  of the  problem.

I pause  to give  a nice  way  to get  from  the FindInstance  output  to the  affine  rational  point.   Let
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In[  ]:= A = {{1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 0}};

A // MatrixForm

Out[  ]//MatrixForm=

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

We  take  the  output  of FindInstance using  only  the  first  instance,  changing  the  conditions  may  give  a 

new  instance

In[  ]:= inst = {x, y, z, w} /.

FindInstance [fermatH ⩵ 0 && (x + y) (x + z) (y + z) ≠ 0 && w > 5, {x, y, z, w}, Integers ]〚1〛
Out[  ]= {6, 1, -9, 8}

Now  we  use

In[  ]:= fltMD [inst, A]

Out[  ]= 
3

4
,
1

8
, -

9

8


Further  we  can  replace  A by any  permutation  of the  first  3 rows  of A to get  additional  solutions  by 

permuting  the  components.   As  the  the  lower  bound  for  w gets  larger  this  will  take  more  time

In[  ]:= inst = Timing [{x, y, z, w} /. FindInstance [fermatH ⩵ 0 &&

(x + y) (x + z) (y + z) ≠ 0 && x^2 + y^2 + z^2 + w^2 > 700, {x, y, z, w}, Integers ]〚1〛]
Out[  ]= {8.26453, {-24, -2, 18, 20}}

Proceeding  this  way  I found  6  instances  which  a�er  permuting

In[  ]:= fermatH /. Thread [{x, y, z, w} → {-24, -2, 18, 20}]

which,  a�er  permuting  gave   36 different  solutions  not  on  the  three  lines.   Plotting  I get
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In[  ]:= Show [ContourPlot3D [x^3 + y^3 + z^3 + 1 ⩵ 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh → None ],

ParametricPlot3D [{{t, -t, -1}, {t, -1, -t}, {-1, t, -t}}, {t, -20, 20}, PlotStyle → Blue ],

Graphics3D [{Red, PointSize [.02], Point [S]}]]

Out[  ]=

The  symmetry  is partly  due  to the  symmetry  of the  surface  and  our  permutations  but  there  are  10 

points  in 3 of the  non-central  sectors  in somewhat  of an oval  pattern.   The  symmetry  in the  central  

triangle  is completely  explained  by the  6 symmetries  of one  instance  but  not  the  other  symmetries.  

Perhaps  there  are  3 other  rational  curves  on  this  surface?     There  certainly  are  lots  of other  rational  

points  to find  here  so this  is,  to me,  an open  problem.
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1.7Trigonometric Parameterization
In this   section  I give  some  other  parameterized   surfaces  using  rational  parametric  functions  as proxies  

for  trigonometric  Cos, Sin  parameterizations.   It is based  on  the  parameterization  of the  circle  I have  

been  using

In[  ]:= circ2D = {2 t / (1 + t^2), (1 - t^2) / (1 + t^2)}

Out[  ]= 
2 t

1 + t2
,
1 - t2

1 + t2


In[  ]:= Show [ParametricPlot [{2 t / (1 + t^2), (1 - t^2) / (1 + t^2)}, {t, -15, 15},

PlotStyle → {Directive [Thickness [.025 ], Orange ]}, PlotRange → Full, Axes → None ],

ParametricPlot [{Cos[u], Sin[u]}, {u, -Pi, Pi}, PlotStyle → Directive [Black, Dashed ]],

ImageSize → Small ]

Out[  ]=

O�en,  in this  book  on  surfaces  I will  use  the  following  curve

circ3D = {2 t / (1 + t^2), (1 - t^2) / (1 + t^2), 0}

Theoretically  the  parameter  t should  actually  run  from  -∞ ≤ t ≤ ∞  where  at the  endpoints  we  mean  of 

course  the  limit.   In practice  we  can  use  a large  bounded  range.   We  will  use  s, t exclusively  for  the  

rational  parameterizations  with  u, v  used  in the  trigonometric  ones  so there  will  be  no  notational  

confusion.  Here  u, v  will  normally  run  as above   -π ≤ u, v ≤ π .

I mention  here  that  some  of these  parameterizations  in from  the  book  

CRC Standard Curves and Surfaces with Mathematica by David  H.  von  Seggern.   Others  may  be found  at 

Wolfram  MathWorld  and  the  Wolfram  Demonstrations  Project.   

1.7.2  Parametric  surfaces  via trigonometry

The  Sphere  and  hyperboloid

In[  ]:= trigSphere = {Sin[u] Cos[v], Sin[u] Sin[v], Cos[u]};

rationalSphere = 
1 - t2 × 2 s

1 + t2 × 1 + s2
,

1 - t2 × 1 - s2
1 + t2 × 1 + s2

,
2 t 1 + s2

1 + t2 × 1 + s2
;
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I earlier  mentioned  the  rational  parameterization  of the  hyperboloid,  I repeat  so we  have  these  all  

together  .

In[  ]:= hyperboloid3D = 
t - s^2 t

1 - s^2
,
1 + s2 - 2 s t

1 - s2
,
2 s - t - s2 t

1 - s2
;

The  Torus:   the  standard  parameterization  is the  following  where  a is the  large  radius  and  b the small .   

Our  torus  in Section  4 parameterization  is based  on  this.

trigTorus = {(a + b Cos[v]) Cos[u], (a + b Cos[v]) Sin[u], b Sin[v]};

For  large  radius  4 and  small  radius  2

In[  ]:= TrigTorus = trigTorus /. {a → 4, b → 2}

Out[  ]= {Cos[u] (4 + 2 Cos[v]), (4 + 2 Cos[v]) Sin[u], 2 Sin[v]}

In[  ]:= ParametricPlot3D [TrigTorus , {u, -Pi, Pi}, {v, -Pi, Pi}, Mesh → None ]

Out[  ]=

The  Crosscap

In[  ]:= crocap = {Sin[u] Sin[2 v] / 2, Sin[2 u] Cos[v]^2, Cos[2 u] Cos[v]^2};
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In[  ]:= ParametricPlot3D [crocap, {u, -Pi, Pi}, {v, -Pi, Pi}, Boxed → False, Axes → False ]

Out[  ]=

This  is algebraic  since  elementary  trig  identities,  eg. Sin [2 u] = 2 Sin [u] Cos [u], allow  one  to write  these  

parameters  in terms  of the  proxies  for  sin3  and  cosine.   Also  the  square  of the  proxies  are  again  rational  

functions.   These  equations  can  get  quite  involved  and  the  implicit  equations  may  be of very  high  

degree.

Astroidal  Surface

In[  ]:= astroid = {(Cos[u] Cos[v])^3, ( Sin[u] Cos[v])^3, Sin[v]^3}

Out[  ]= Cos[u]3 Cos[v]3, Cos[v]3 Sin[u]3, Sin[v]3

In[  ]:= ParametricPlot3D [astroid, {u, -Pi, Pi}, {v, -Pi, Pi},

MaxRecursion → 3, PlotRange → 1, Axes → False, Boxed → False ]

Out[  ]=

will  be  algebraic.   von  Seggern  tells  us the  equation  is 
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x2/3 + y2/3 + z2/3 = 1

which  is not  algebraic.   But  our  theorems  of Section  1.3  tell  us  there  be algebraic  equations  as well.

The  Cosine  Surface   likewise  will  be  algebraic  because  of the  elementary   formula  for  Cos[u+v]   =Cos[u]  

Cos[v]-Sin[u]  Sin[v]

In[  ]:= cosSurf = {Cos[u], Cos[v], Cos[u + v]};

In[  ]:= ParametricPlot3D [cosSurf, {u, -Pi, Pi}, {v, -Pi, Pi},

MaxRecursion → 3, PlotRange → 1, Axes → False, Boxed → False ]

Out[  ]=

An example  of a surface  which  is not  algebraic  is the  Möbius  Strip.   

In[  ]:= moeband = {Cos[u] (1 + t Cos[u / 2]), Sin[u] (1 + t Cos[u / 2]), t Sin[u / 2]}

Out[  ]=  1 + t Cos
u

2
 Cos[u], 1 + t Cos

u

2
 Sin[u], t Sin

u

2


In[  ]:= ParametricPlot3D [moeband, {u, -Pi, Pi}, {t, -.5, .5}, MaxRecursion → 3,

PlotRange → All, PlotRange → 1, Axes → False, Boxed → False ]

Out[  ]=

As pointed  out  in my  Plane  Curve  Book   this  is a one-sided  surface  and  cannot  be  a naive  algebraic  
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surface.   The  problem  is not  combining  parameters  u, t, rather  the  Cos  u

2
 can  not  be  expressed  polyno -

mially  in terms  of Sin[u]  and  Cos[u].

The  spirals  likewise  cannot  be  algebraic  because  we  cannot  use  the  same  variable  as algebraic  and  

trigonometric  parameter.   For  example  van  Seggern  gives

vSspiral  = {a Cos[n  v] (1 + Cos[u])  + c Cos[n  v],  a Sin[n  v] (1 + Cos[u])  + c Sin[n  v],  b v/2/Pi  + a Sin[u]};

where  a, b, c are  positive  numbers  and  n is a positive  integer.

The  example  given  has

In[  ]:= vSspiral1 = vSspiral /. {a → .1, b → 1, c → .5, n → 4}

Out[  ]= 0.5 Cos[4 v] + 0.1 × (1 + Cos[u]) Cos[4 v], 0.5 Sin[4 v] + 0.1 × (1 + Cos[u]) Sin[4 v],
v

2 π
+ 0.1 Sin[u]

In[  ]:= ParametricPlot3D [vSspiral1 , {u, 0, 2 Pi}, {v, 0, 2 Pi}]

Out[  ]=

But  parameter  v is being  used  in both  a trigonometric  and  analytic   parameter  in the  last  coordinate  so 

this  will  not  define  a naive  implicit  surface.

1.7.3  The Klein  Bottle

The  Klein  Bottle  is a simple  topological  surface  in 4-space  obtained  by gluing  the  sides  of the  square  

blue  to blue  and  red  to red  in the  indicated  directions  without  self  intersections,  the  last  instruction  

cannot  be done  in 3 space.

We  take  our  exposition  from  Wolfram  Mathworld.  An implicit  equation  of a projection  into  3-space  is 

In[  ]:= KbottEq = (x^2 + y^2 + z^2 + 2 y - 1) ((x^2 + y^2 + z^2 - 2 y - 1)^2 - 8 z^2) +

16 x z (x^2 + y^2 + z^2 - 2 y - 1);
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In[  ]:= {ContourPlot3D [KbottEq ⩵ 0, {x, -4, 4}, {y, -4, 4}, {z, -4, 4}, Mesh → None,

ContourStyle → Opacity [.7], MaxRecursion → 4, Axes → False, Boxed → False ],

ContourPlot3D [KbottEq ⩵ 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh → None,

ContourStyle → Opacity [.7], MaxRecursion → 4, Axes → False ]}

Out[  ]=  , 

In the  right  hand  plot  we  slice  the  surface  by sides  of the  box  to better  see  the  interior.   Of  course  

projecting  causes  self  intersections.   Here  is an interesting  trigonometric  parameterization  of an inter -

pretation  of this  4 dimensional  surface.

In[  ]:= sq2 = N[Sqrt [2]];

kbx = Cos[u] (Cos[.5 u] (sq2 + Cos[v]) + Sin[.5 u] Sin[v] Cos[v]);

kby = Sin[u] (Cos[.5 u] (sq2 + Cos[v]) + Sin[.5 u] Sin[v] Cos[v]);

kbz = Sin[.5 u] Sin[v] + Cos[.5 u] Sin[2 v];

kbPar = {kbx, kby, kbz}

Out[  ]= {Cos[u] (Cos[0.5 u] (1.41421 + Cos[v]) + Cos[v] Sin[0.5 u] Sin[v]),

Sin[u] (Cos[0.5 u] (1.41421 + Cos[v]) + Cos[v] Sin[0.5 u] Sin[v]),

Sin[0.5 u] Sin[v] + Cos[0.5 u] Sin[2 v]}
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In[  ]:= ParametricPlot3D [kbPar, {u, 0, 4 Pi},

{v, 0, 4 Pi}, PlotRange → All, Axes → False, Boxed → False ]

Out[  ]=

In[  ]:= Simplify [KbottEq /. Thread [{x, y, z} → (kbPar /. {u → 3, v → 2})]]

Out[  ]= 1.15968

This  does  not  satisfy  the  implicit  equation  given  and  is not  guaranteed  to give  such  an equation  

because  of the  use  of half  angles  , .5 u, .5 v.  But  it does  show  another  self  intersecting  parametric  

surface.

1.8 Fractional Linear Transformations
We  have  seen  Fractional  Linear  Transformations  before  in my  curve  books  and  even  in Chapter  1 of this  

book  .  But  as a review,  in Mathematica  they  are  given  by the  built  - in TransformationFunction  .  These  

are  also  a special  formulation  of Projective  Linear  Transformations,  the  name  Fractional  Linear  Transfor -

mations comes  from  the  book   [Abhyankar].

1.8.1  Basic concepts

As a first  example,  from  Wolfram  documentation,
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In[  ]:= t = RotationTransform [θ, {0, 0, 1}]

Out[  ]= TransformationFunction 
Cos[θ] -Sin[θ] 0 0

Sin[θ] Cos[θ] 0 0

0 0 1 0

0 0 0 1



As in this  example  in this  Chapter  we  are  only  working  in 3 - Space  so the  TransformationMatrix  which  

the  argument  of this  function  is  a 4 ×4 matrix.   In this  illustration  it is broken  up  into  parts,  the  upper  

le�  3⨯3 is the  matrix  of a linear  transformation.   The  3×1 matrix   to the  right  is a translation,  in this  case  

the  zero  transformation.  With  the  given  bottom  row,   the  transform  is an affine  transform,  that  is the  

affine  three  space  remains  fixed.   However  if the  three  le�  hand  zeros  are  replaced  by three  numbers  

not  all  zero  and  the  corner  number  1 is replaced  by some  other  non-zero  number  then  we  have  a 

projective  transformation.   Essentially  the  last  row  will  give  a specialization.   In this  book  the  transforma -

tion  is always  assumed  to be invertible.   The  best  check  is with  our  function  matrixrank with  a  loose  

tolerance   so it will  be   numerically  well  behaved.   We  want  the  result  to be 4.

In our  special  case  the  TransformationFunction  will  take  a list  of length  3 as an argument,  that  is an 

affine  point.   It will  return  another  such  point.   But  unless  the  last  row  is {0, 0, 0, a}, a ≠ 0, this  point  

returned  in in a different  specialization  of projective  space,  so this  will  be  a projective  transformation.   

As in my  other  books  I can  define  a push-forward  functor  which  works  on  surfaces  rather  than  points,  

that  is,  it gives  the  equation  of the  surface  obtained  by applying  the  transformation  function

Examples:

In[  ]:= A1 =

Cos[Pi / 4] -Sin[Pi / 4] 0 0

Sin[Pi / 4] Cos[Pi / 4] 0 0

0 0 1 0

0 0 0 1

;

N[A1] // MatrixForm

Out[  ]//MatrixForm=

0.707107 -0.707107 0. 0.

0.707107 0.707107 0. 0.

0. 0. 1. 0.

0. 0. 0. 1.

In[  ]:= N[TransformationFunction [A1][{1, 2, 3}]]

Out[  ]= {-0.707107 , 2.12132, 3.}

This  is a rotation  around  the  z-axis.  

In[  ]:= TransformationFunction [A1][{0, 0, 2}]

Out[  ]= {0, 0, 2}
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In[  ]:= B = Append [Join [Orthogonalize [RandomReal [{-1, 1}, {3, 3}]], {{0}, {0}, {0}}, 2], {0, 0, 0, 1}];

B // MatrixForm

Out[  ]//MatrixForm=

-0.638947 -0.0671356 0.766315 0

0.395362 0.825883 0.402003 0

-0.659876 0.55983 -0.501153 0

0 0 0 1

we get  a rotation  of affine  3-space  with  axis  some  line  through  the  origin  if the  matrix  has  determinant  1 

, otherwise  the  determinant  is  -1 and  it is a reflection  of affine  3-space  with  mirror  a plane  through  the  

origin.

In[  ]:= Det[B]

Out[  ]= 1.

In[  ]:= TransformationFunction [B][{1, 2, 3}]

Out[  ]= {1.52573, 3.25314, -1.04367 }

In[  ]:= If

Out[  ]= If

In[  ]:= B1 = {{1, 0, 0, 2}, {0, 1, 0, -4}, {0, 0, 1, 3}, {0, 0, 0, 1}};

B1 // MatrixForm

Out[  ]//MatrixForm=

1 0 0 2

0 1 0 -4

0 0 1 3

0 0 0 1

Then  we  get  a translation   of affine  space  by vector  {2,-4,3}

In[  ]:= TransformationFunction [B1][{1, 1, 1}]

Out[  ]= {3, -3, 4}

In[  ]:= If

Out[  ]= If

In[  ]:= B2 = Append [Join [Orthogonalize [RandomReal [{-1, 1}, {3, 3}]], {{2}, {-3}, {5}}, 2], {0, 0, 0, 1}];

In[  ]:= B2 // MatrixForm

Out[  ]//MatrixForm=

0.642387 -0.221533 0.733663 2

0.642974 0.676728 -0.35864 -3

0.41704 -0.702113 -0.577162 5

0 0 0 1

we will  get  a rotation  about  a line  or a refection  about  a plane  not  necessarily  through  the  origin.    
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In[  ]:= TransformationFunction [B2][{1, 1, 1}]

Out[  ]= {3.15452, -2.03894, 4.13777 }

Finally  if we  just  take  a random  invertible  matrix

In[  ]:= B4 = RandomReal [{-1, 1}, {4, 4}];

B4 // MatrixForm

Out[  ]//MatrixForm=

0.0653255 0.557682 -0.528581 -0.449588

0.1035 -0.630132 0.570384 -0.720002

-0.87486 0.0275579 -0.989399 -0.45492

0.915743 0.779111 0.790421 0.946909

we get  an affine  transformation  followed  by a specialization  

In[  ]:= TransformationFunction [B4][{1, 1, 1}]

Out[  ]= {-0.389523 , -1.44758, -1.11267 }

where  this  last  point  is in a different  specialization  of projective  space  .

You  may  have  seen  in my  books  and/or  articles  that  I can  use  transformation  functions  to define  ratio -

nal  parametric  curves.

In[  ]:= Clear [t]

In[  ]:= C1 = RandomInteger [{-9, 9}, {4, 4}]

Out[  ]= {{-2, 6, 3, -4}, {0, -6, -8, -9}, {7, 2, -5, -5}, {-3, 6, 6, -6}}

In[  ]:= matrixrank [C1, .00005 ]

Out[  ]= 4

In[  ]:= TransformationFunction [C1][{t, t^2, t^3}]

Out[  ]= 
-4 - 2 t + 6 t2 + 3 t3

-6 - 3 t + 6 t2 + 6 t3
,

-9 - 6 t2 - 8 t3

-6 - 3 t + 6 t2 + 6 t3
,

-5 + 7 t + 2 t2 - 5 t3

-6 - 3 t + 6 t2 + 6 t3


Thus  TransformationFunction[A]  takes  triples  of variables  as arguments  as well  as triples  of points  .

I will  o�en  abbreviate  TransformationFunction[A ][p ] by  my  function  fltMD[p,A].  To  see  the  action  

on all  points  of the  projective  plane  I have  a function  fltiMD,  this  will  take  triples  or quadruples,  affine  or 

projective  points  and  test  the  result  to see  if it is affine  or projective.   This  function  does  not  accept  

variables  as arguments.

In[  ]:= fltiMD [{1, 2, 3}, B4]

qi = fltiMD [{1, 2, 3, 0}, B4]

Out[  ]= {-0.0502707 , -1.74485, -1.28394 }

Out[  ]= {0.267793 , -1.47664, -0.85952 }
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In[  ]:= pi = fltiMD [qi, Inverse [B4]]

Out[  ]= {2.40765, -1.13159, -2.0686 }

Note  this  last  answer  can  be normalized  :

In[  ]:= pi  pi〚1〛
Out[  ]= {1., -0.47, -0.859179 }

One  important  fact  we  will  use  later  is that  these  TransformationMatrices are  themselves  homoge -

neous  things  in that  we  can  multiply  them  by a non-zero  constant  without  changing  the  result.   For  

example  recall  above

In[  ]:= fltMD [{1, 1, 1}, B4]

Out[  ]= {-0.389523 , -1.44758, -1.11267 }

But  replacing  B4  by 3*B4

In[  ]:= 3 * B4 // MatrixForm

Out[  ]//MatrixForm=

0.0530815 -0.601544 -0.410181 2.77583

1.69767 1.95791 2.50438 0.593205

-0.633522 1.83377 1.53556 2.45497

-2.62067 -2.94403 -0.126926 1.02647

In[  ]:= fltMD [{1, 1, 1}, 3 B4]

Out[  ]= {-0.389523 , -1.44758, -1.11267 }

Another  important  property  of these  transforms  is that  multiplication  of transformation  matrices  

corresponds  to composition  of transformation  functions.   Recall  the  transformation  matrix  A1 above  

rotates  space  around  the  z-axis.   B1  translates  all  points  by the  vector  {2,-4,3}

In[  ]:= tr1 = fltMD [{1, 1, 1}, A1]

fltMD [{0, Sqrt [2], 1}, B1]

fltMD [{1, 1, 1}, B1.A1]

fltMD [{1, 1, 1}, A1.B1]

Out[  ]= 0, 2 , 1

Out[  ]= 2, -4 + 2 , 4

Out[  ]= 2, -4 + 2 , 4

Out[  ]= 3 2 , 0, 4

So transforming  by A1 first  and  then  transforming  the  result  by  B1 gives  the  same  result  as transforming  

by the  product  B1.A1 Notice  that  transforming  by A1.B1 gives  a different  answer  because  neither  

composition  of transformations  or matrix  multiplication  is commutative.

One  consequence  of this,  since  all  our  transformation  matrices  are  assumed  invertible,  is that  transform -
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ing  using  the  inverse  matrix   gives  the  inverse  transform.   So  all  these  transformation  functions  are  

invertible,  hence  1-1  and  onto.

In[  ]:= fltMD [{0, Sqrt [2], 1}, Inverse [A1]]

Out[  ]= {1, 1, 1}

1.8.2 The group PGL(4,ℝ)

These  2 properties  say  the  set  of transformation  functions  with  invertible  transformation  matrices  is a 

group.  (See  any  abstract  algebra  book  or section  6.1  of my  plane  curve  book .  This  particular  group  has  

been  extensively  studied  and  is known  in the  literature  as PGL(4,ℝ),  the  group  of invertible  4×4 matrices  

modulo  scalar  multiplication.  This  group  of transformations  is recognized  as the  correct  group  for

projective  geometry  so if there  is an invertible  transformation  function  taking  surface  S1 to surface  S2 

we say  S1 is projectively  equivalent  to S2.

I will  try  to make  a few  comments  on  the  relationship  between  projective  linear  transformations  and  

our  Transformation  Functions,  it somewhat  complicated  but  not  really  needed  for  the  rest  of this  book.

If one  is willing  to stay  entirely  within  the  projective  notation,  4 components,  then  to apply  the  transfor -

mation  given  by an invertible  4×4 matrix  A one  just  uses  matrix  multiplication.   But  remember  that  the  

input,  matrix  and  output  are  all  homogeneous  so the  answer  may  differ  from  one’s  expectations  by a 

scalar  multiple.

As an example  consider  the  transformation  A which  just  re-arranges  the  4 projective  vertex  points  V, 

most  of which  are  invisible.

In[  ]:= V = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}};

A = {{0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}, {1, 0, 0, 0}};

A // MatrixForm

Out[  ]//MatrixForm=

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

Applying  A to each  projective  point  in V we  get

In[  ]:= A.# & /@ V

Out[  ]= {{0, 0, 0, 1}, {1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}}

Notice  first  if we  denote  the  points  in V as v1, v2, v3,, v4 then  the  shi�  is counterclockwise  in that   Av1= v4, 

Av4= v3, and   so on.  

Notice   second  that  this  shi�s  them  as columns,  not  rows.   This  is somewhat  not  expected  as we  thing  

of transformations  matrices  from  a row  point  of view,  as the  first  3 rows  contain  linear  action  in the  first  

3 coordinates  and  translations  in the  4th.   The  last  row  is different  as it gives  denominators.   When  

working  with  actual  numbers  (fractions  or machine  numbers)  in our  coordinates  we  can  somewhat  
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mimic   a projective  transformation  which  involves  invisible  points  using  our  special  version  of a transfor -

mation  function  fltiMD .

In[  ]:= fltiMD [#, A] & /@ V

Out[  ]= {{0, 0, 0}, {1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}}

This  is almost  the  same  except  the  first  is reduced  to an affine  number  since  the  4th  component  is non-

zero.   But  if we  start  with  a general  invisible  point  it may  look  different

In[  ]:= w1 = {3, 2, 1, 0}

w2 = fltiMD [w1, A]

w3 = fltiMD [w2, A]

w4 = fltiMD [w3, A]

fltiMD [w4, A]

Out[  ]= {3, 2, 1, 0}

Out[  ]= 
2

3
,
1

3
, 0

Out[  ]= 
1

2
, 0,

3

2


Out[  ]= {0, 3, 2}

Out[  ]= {3, 2, 1, 0}

we cycle  around  4 points,  3 of which  are  affine.   In this  case  if we  write   each  affine  point  in projective  

notation  with  the  denominator  being  the  last  coordinate  then  we  are  simply  permuting  the  coordinates  

counterclockwise.   But  if we  start  with  a visible  number

In[  ]:= u1 = {5, 6, 7};

u2 = fltMD [u1, A]

u3 = fltMD [u2, A]

u4 = fltMD [u3, A]

fltMD [u4, A]

Out[  ]= 
6

5
,
7

5
,
1

5


Out[  ]= 
7

6
,
1

6
,
5

6


Out[  ]= 
1

7
,
5

7
,
6

7


Out[  ]= {5, 6, 7}

we still  cycle  though  4 visible  points  but  not  in the  expected  order.   The  thing  to remember  is that  fltMD  

and  fltiMD  are  giving  results  in a different  specialization  of projective  space  in each  case.
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1.8.3 The push-forward  operator

The  natural  action  on  a surface  by an arbitrary  transformation  is to transform  it to its  inverse  image  

under  the  transform.  However  since  our  transforms  will  be  invertible  if we  do  a fractional  linear  transfor -

mation  from  surface  S1 to S2 then  taking  the  inverse  image  of the  inverse  transformation  gives  us the  

image  of a surface  under  the  original  transformation.   This  gives  us what  is called  a push  forward  

functor instead  of just  mapping  points  to points  it maps  naive  surfaces  to naive  surfaces.   The  code  we  

will  use  is called  FLTNS  which  is a special  case  of FLT3D  in my  Space  Curve  Book.   The  full  code  in 

GlobalFunctionsS.nb,  here  is shortened  code  without  checks  to show  how  simple  it is.    Note  that  this  

routine  involves  homogenizing  and  specializing  even  though  we  have  affine  equations  as input  and

output.   In the  Space  Curve  Book  I have  a general  push-forward  function  for  non-invertible  transforma -

tion  matrices,  it takes  a large  part  of Chapter  2 of that  book  and  many  subroutines  to describe.

In[  ]:= FLTNS [f_, A_, X_] := Module [{B, d, g, h, t, n},

B = Inverse [A].Append [X, t];

d = tDegMD [f, X];

g = Expand [t^d (f /. Thread [X → X / t])];

h = Expand [g /. Thread [Append [X, t] → B]];

Chop [h /. {t → 1}, dTol ]]

Example  :  Consider  the  parabolic  ellipsoid,  the  orange  is original,  blue  is the  transform.

In[  ]:= f = x^2 + y^2 - z;

In[  ]:= g1 = FLTNS [f, B1, {x, y, z}]

g2 = FLTNS [f, B2, {x, y, z}]

B3 = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, -1, -.4}, {0, 0, 1, .2}};

B3 // MatrixForm

g3 = FLTNS [f, B3, {x, y, z}]

Out[  ]= 23 - 4 x + x2 + 8 y + y2 - z

Out[  ]= 37.5401 - 5.23631 x + 0.461738 x2 + 6.60435 y + 0.526242 x y +

0.871377 y2 - 9.02741 z + 0.846884 x z - 0.413987 y z + 0.666885 z2

Out[  ]//MatrixForm=

1 0 0 0

0 1 0 0

0 0 -1 -0.4

0 0 1 0.2

Out[  ]= 10. + 1. x2 + 1. y2 + 15. z + 5. z2
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In[  ]:= {ContourPlot3D [{f ⩵ 0, g1 ⩵ 0}, {x, -6, 6}, {y, -8, 6}, {z, -1, 7}, Mesh → None,

ImageSize → Small ], ContourPlot3D [{f ⩵ 0, g2 ⩵ 0}, {x, -6, 6}, {y, -8, 6},

{z, -1, 7}, Mesh → None, ImageSize → Small ], ContourPlot3D [{f ⩵ 0, g3 ⩵ 0},

{x, -3, 3}, {y, -3, 3}, {z, -4, 3}, Mesh → None, ImageSize → Small ]}

Out[  ]=  , , 

Note  that  in the  last  plot  the  projective  transformation  takes  the  parabolic  ellipsoid  to an ellipsoid.   

These  surfaces  are  projectively  equivalent.

A nice  feature  of Mathematica is that  the  built-in  Inverse function  for  matrices  can  recognize  symbolic  

matrices  in a form  that  is generically  invertible  and  give  the  generic  inverse.   Here  is one  way  we  may  

use  it :  Consider  the  plane  curve  given  by 

In[  ]:= f = -3 + 3 x - 4 y + 2 x^2 + 2 y^2;

We  want  to transform  this  to the  unit  circle  .  This  is actually  a 2 dimensional  problem  but  we  can  

consider  z a free  variable.

In[  ]:= T = {{1, 0, 0, a}, {0, 1, 0, b}, {0, 0, 1, 0}, {0, 0, 0, d}};

g = FLTNS [f, T, {x, y, z}]

Out[  ]= -
3

d2
-
3 a

d2
+
2 a2

d2
+
4 b

d2
+
2 b2

d2
+
3 x

d
-
4 a x

d
+ 2 x2 -

4 y

d
-
4 b y

d
+ 2 y2

In[  ]:= c0 = g /. Thread [{x, y, z} → {0, 0, 0}]

Out[  ]= -
3

d2
-
3 a

d2
+
2 a2

d2
+
4 b

d2
+
2 b2

d2

In[  ]:= cx = Coefficient [g, x] /. Thread [{x, y, z} → {0, 0, 0}]

Out[  ]=

3

d
-
4 a

d

In[  ]:= cy = Coefficient [g, y] /. Thread [{x, y, z} → {0, 0, 0}]

Out[  ]= -
4

d
-
4 b

d

66     SSchapter1v2.nb



In[  ]:= sol = Solve [c0 ⩵ -2 && cx ⩵ 0 && cy ⩵ 0, {a, b, c, d}, Reals ]

Out[  ]= a →
3

4
, b → -1, d → -

7

4
, a →

3

4
, b → -1, d →

7

4


Picking  either  solution

In[  ]:= g1 = g /. sol〚2〛
Out[  ]= -2 + 2 x2 + 2 y2

which  is equivalent  to -1 + x2 + y2.  So  

In[  ]:= T1 = T /. sol〚2〛
FLTNS [f, T1, {x, y, z}]

Out[  ]= 1, 0, 0,
3

4
, {0, 1, 0, -1}, {0, 0, 1, 0}, 0, 0, 0,

7

4


Out[  ]= -2 + 2 x2 + 2 y2

1.8.4 Some important  transformations  .

Here  are  some  transformation  functions  that  will  prove  useful  in the  sequel  .

1.8.4.1  Miscellaneous  transformations

A set  of points  in ℙ^3  possibly  including  infinite  points,  is in general  position  if no  k + 1 points  lie  in a k - 

1 dimensional  linear  set  . (Recall  that  generically  k + 1 points  determine  a k dimensional  set  .)  A suffi -

cient  condition  that  a set  of 4 points  is in general  position  is that  the  matrix  with  these  4 points  as 

columns  (or  rows)  is invertible.   There  is also  a general  position  tester  in GlobalFunctionsS.nb called  

gpTestMD .  

It is a well  known  fact  that  there  is a projective  linear  transformation,  that  is transformation  in 

PGL[4,ℝ],  which  takes  any  4  projective  points  forming  set  P1 in general  position  to any  4 projective  

points  forming  set  P2 in general  position.   Working  strictly  projectively  with  4×4 matrices  as in 2.2.2  one  

creates  a matrix  B using  the  4 points  in P2 as columns  and  a matrix  A using  the  4 points  in P1 as 

columns.   then  the  desired  transformation  matrix  is B.Inverse[A ].  

If all  8 points  above  are  affine,  and  this  can  be made  to happen  by specializing  at a plane  containing  

none  of them,  then  there  is a routine   to find  an affine  transformation  matrix  with  a Transformation  

Function   that  sends  the  general  position  points  in P1 to the  4 points  in P2.  As  you  will  see  this  is not  so 

obvious.
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In[  ]:= getTransformMatrix [At_, Bt_] := Module [{A, B, d, F, G, a, b, AA, BB, L},

A = Transpose [At];

B = Transpose [Bt];

d = Dimensions [A]〚1〛;
If[! gpTestMD [Transpose [A], d, .0003 ], Echo ["Not general Position "];

Abort []];

a = Take [A, All, -1];

G = Append [Join [IdentityMatrix [d], -a, 2], Append [Table [0, {d}], 1]];

AA = Transpose [Table [Transpose [A]〚i〛 - Flatten [a], {i, d}]];

BB = Transpose [Table [Transpose [B]〚i〛 - Transpose [B]〚d + 1〛, {i, d}]];

L = BB.Inverse [AA];

F = Append [Join [L, Take [B, All, -1], 2], Append [Table [0, {d}], 1]];

F.G]

Example  :

In[  ]:= At = {{1, 0, 5}, {2, -1, 4}, {2, -1, -4}, {-2, -1, -2}};

Bt = {{-1, 2, 4}, {2, -5, 4}, {5, 1, -5}, {5, 5, 4}};

In[  ]:= M = getTransformMatrix [At, Bt];

M // MatrixForm

Out[  ]//MatrixForm=

-
3

16
-

45

16
-

3

8

17

16

-
11

8

51

8
-

3

4

57

8

-
27

16
-

45

16

9

8

1

16

0 0 0 1

In[  ]:= fltMD [#, M] & /@ At

Out[  ]= {{-1, 2, 4}, {2, -5, 4}, {5, 1, -5}, {5, 5, 4}}

A transformation  matrix  produces  a rotation  if it is an  affine  transformation  with  upper  le�  3×3 subma -

trix  an orthogonal  matrix  with  determinant  1.  It is a geometric  fact  that  any  rotation   of ℝ3 will  have  a 

fixed  line  as an axis.   Mathematica   differentiate  RotationTransform  from  RotationMatrix  in that  in the  

first  case  one  gets  the  4⨯4 transformation  matrix  we  have  been  discussing,  while  RotationMatrix  is just  

the  upper  le�  3×3 matrix.   However  in either  case  the  built-in  rotations  are  just  linear   transformations  

so the  origin  {0,0,0}  is always  on  the  axis.   Thus  for  our  use  we  need  a more  general  construction.   Here  

we will  pick  two  affine  intersecting  planes  and  do  an orthogonal  rotation  from  one  plane  to the  other.  

In particular  we  translate  a point  on  the  intersection  line  two  the  origin,  use  a built-in  rotation  matrix  

and  then  translate  back.   The  planes  are  given  by their  affine  equations  in variables  x,y,z.
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In[  ]:= planeRotate3D [plane1_ , plane2_ ] :=

Module [{p, A1, nplane1, nplane2, w, v, M, A2, nullarr },

pi = FindInstance [plane1 ⩵ 0 && plane2 ⩵ 0 &&

Abs[x] < 8 && Abs[y] < 8 && Abs[z] < 8, {x, y, z}, Reals ]〚1〛;
If[Length [pi] < 3, Echo ["no affine intersection "]; Abort []];

p = N[{x, y, z} /. pi];

A1 = {{1, 0, 0, -p〚1〛}, {0, 1, 0, -p〚2〛}, {0, 0, 1, -p〚3〛}, {0, 0, 0, 1}};

nplane1 = FLTNS [plane1, A1, {x, y, z}];

nplane2 = FLTNS [plane2, A1, {x, y, z}];

v = Grad [nplane1, {x, y, z}];

w = Grad [nplane2, {x, y, z}];

M = N[RotationMatrix [{v, w}]];

A2 = Append [Join [M, {{0}, {0}, {0}}, 2], {0, 0, 0, 1}];

Inverse [A1].A2.A1]

Simple  Example,  note  that  even  exact  input  will  almost  always  give  numerical  output.   Also  note  that  

this  generally  gives  an affine  matrix  as output,  but  never  projective.

In[  ]:= R1 = planeRotate3D [x - 3, y - 2 z + 3];

R1 // MatrixForm

Out[  ]//MatrixForm=

0. -0.447214 0.894427 1.65836

0.447214 0.8 0.4 -1.94164

-0.894427 0.4 0.2 3.88328

0. 0. 0. 1.

In[  ]:= planeOut = FLTNS [x - 3, R1, {x, y, z}]

Out[  ]= 1.34164 + 0.447214 y - 0.894427 z

In[  ]:= Expand planeOut * 3  planeOut 〚1〛
Out[  ]= 3. + 1. y - 2. z

To see  that  the  intersecting  line  given  by the  two  plane  equations  is fixed

In[  ]:= fixedPt = SolveValues [x ⩵ 3 && y - 2 z ⩵ -3 && y ⩵ RandomInteger [{-5, 5}], {x, y, z}]〚1〛

Out[  ]= 3, 2,
5

2


In[  ]:= TransformationFunction [R1][fixedPt ]

Out[  ]= {3., 2., 2.5}

1.8.5   iTransform

Our  most  important  transform  is a projective  transform  which  specializes  at a plane,  that  is makes  that  

plane  invisible,  but  makes  the  original  plane  visible  as the  plane x + y + z = 1.  One  can  choose  the  
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location  of the  new  visible  plane  by an additional  transformation  but  I find  that  this  choice  works  best  

in most  cases.   The  out  put  is the  transformation  matrix,  but  combining  this  with  FLTNS  and  Countour -

Plot3D  make  the  previously  invisible  curve  visible.   The  user  must  specify   a plane  to specialize  but   that  

could  be random  but  must,  for  technical  reasons,  intersect  the  plane x + y + z = 2.  In particular  it 

cannot  be x + y + z = 1.  Intuitively  the  choice  should  be far  away  from  any  interesting  part  of a surface  

you  are  working  with,  but  numerically  it works  best  if the  coordinates  are  smallish  numbers.

In[  ]:= iTransform3D [plane_ ] := Module [{ A1, A2, G },

G = Grad [plane, {x, y, z}];

If[G〚1〛 ⩵ G〚2〛 && G〚2〛 ⩵ G〚3〛, Echo ["Illegal Plane"]; Abort [];];

A1 = planeRotate3D [plane, x + y + z - 2];

A2 = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {1, 1, 1, -2}};

Chop [A2.A1]]

As an example  a nice  such  transform  is

In[  ]:= Ai = iTransform3D [z - 4]

Out[  ]= {{0.788675 , -0.211325 , 0.57735, -2.73205 }, {-0.211325 , 0.788675 , 0.57735, -2.73205 },

{-0.57735, -0.57735, 0.57735, 0.535898 }, {0, 0, 1.73205, -6.9282 }}

In[  ]:= clebsch = 81 (x^3 + y^3 + z^3) - 189 (x^2 y + x^2 z + y^2 x + y^2 z + z^2 x + z^2 y) +

54 x y z + 126 (x y + x z + y z) - 9 (x^2 + y^2 + z^2) - 9 (x + y + z) - 1;

In[  ]:= fi = FLTNS [clebsch, Ai, {x, y, z}]

Out[  ]= 879.578 - 3605.64 x + 4890.55 x2 - 2206.05 x3 - 3605.64 y + 9909.58 x y - 6746.65 x2 y +

4890.55 y2 - 6746.65 x y2 - 2206.05 y3 - 1930.07 z + 5204.67 x z - 3654.95 x2 z + 5204.67 y z -

6690.14 x y z - 3654.95 y2 z + 1045.68 z2 - 1329.77 x z2 - 1329.77 y z2 + 72.3627 z3

70     SSchapter1v2.nb



In[  ]:= ContourPlot3D [{fi ⩵ 0, x + y + z ⩵ 1}, {x, -3, 3}, {y, -3, 3}, {z, -3, 3},

Mesh → None, ContourStyle → {Orange, LightGray }, MaxRecursion → 5]

Out[  ]=

Here  are  three  variants  which  allow  us to specialize  in each  affine  coordinate  direction.   They  are  given  

as constants.

In[  ]:= rrtxyz = 4.325098211016204`

Out[  ]= 4.3251

In[  ]:= ixTransform3D = Chop [planeRotate3D [x + y + z - 1, x].iTransform3D [x + rrtxyz ]]

iyTransform3D = Chop [planeRotate3D [x + y + z - 1, y].iTransform3D [y + rrtxyz ]]

izTransform3D = Chop [planeRotate3D [x + y + z - 1, z].iTransform3D [z + rrtxyz ]]

Out[  ]= {{0, 0, 0, 1.1547 }, {0.366025 , 1., 0, 2.74354 },

{0.366025 , 0, 1., 2.74354 }, {1.73205, 0, 0, 7.49129 }}

Out[  ]= {{1., 0.366025 , 0, 2.74354 }, {0, 0, 0, 1.1547 },

{0, 0.366025 , 1., 2.74354 }, {0, 1.73205, 0, 7.49129 }}

Out[  ]= {{1., 0, 0.366025 , 2.74354 }, {0, 1., 0.366025 , 2.74354 },

{0, 0, 0, 1.1547 }, {0, 0, 1.73205, 7.49129 }}
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In[  ]:= clbx = FLTNS [clebsch, ixTransform3D , {x, y, z}]

clby = FLTNS [clebsch, iyTransform3D , {x, y, z}]

clbz = FLTNS [clebsch, izTransform3D , {x, y, z}]

Out[  ]= 35.9 - 543.486 x + 2029.39 x2 + 3362.81 x3 - 37.9385 y + 654.589 x y - 4707.97 x2 y -

120.531 y2 + 645.864 x y2 + 81. y3 - 37.9385 z + 654.589 x z - 4707.97 x2 z +

190.939 y z + 666.616 x y z - 189. y2 z - 120.531 z2 + 645.864 x z2 - 189. y z2 + 81. z3

Out[  ]= 35.9 - 37.9385 x - 120.531 x2 + 81. x3 - 543.486 y + 654.589 x y + 645.864 x2 y +

2029.39 y2 - 4707.97 x y2 + 3362.81 y3 - 37.9385 z + 190.939 x z - 189. x2 z +

654.589 y z + 666.616 x y z - 4707.97 y2 z - 120.531 z2 - 189. x z2 + 645.864 y z2 + 81. z3

Out[  ]= 35.9 - 37.9385 x - 120.531 x2 + 81. x3 - 37.9385 y + 190.939 x y - 189. x2 y -

120.531 y2 - 189. x y2 + 81. y3 - 543.486 z + 654.589 x z + 645.864 x2 z + 654.589 y z +

666.616 x y z + 645.864 y2 z + 2029.39 z2 - 4707.97 x z2 - 4707.97 y z2 + 3362.81 z3

In[  ]:= {ContourPlot3D [{clbx ⩵ 0, x ⩵ 0}, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Mesh → None,

MaxRecursion → 4], ContourPlot3D [{clby ⩵ 0, y ⩵ 0}, {x, -2, 2}, {y, -2, 2},

{z, -2, 2}, Mesh → None, MaxRecursion → 4], ContourPlot3D [{clbx ⩵ 0, z ⩵ 0},

{x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Mesh → None, MaxRecursion → 4]}

Out[  ]=  , , 

This  is 3 different  views  of the  same  surface  but  different  specializations,  in each  case  the  blue  plane  is 

the  same  infinite  plane.  However  the  invisible  points  on  each  specialization  are  visible  in the  others.   In 

this  example  these  look  much  the  same  because  the  Clebsch  surface  is symmetric  in the  variables  

{x,y,z}.   In general  they  can  be quite  different.   Here  is an example  from  Chapter  1.

In[  ]:= ts3 = 10.75200000000001` - 6.39999999999992` x - 11.463999999999935` x2 +

0.640000000000003` x3 + 0.9999999999999938` x4 + 1.5360000000000196` y2 +

0.6400000000000121` x y2 + 0.9999999999999906` x2 y2 + 2.879999999999961` x2 z -

5.1200000000000205` y2 z + 3.5839999999999983` z2 + 3.8400000000000007` x z2 + 1.` x2 z2

Out[  ]= 10.752 - 6.4 x - 11.464 x2 + 0.64 x3 + 1. x4 + 1.536 y2 +

0.64 x y2 + 1. x2 y2 + 2.88 x2 z - 5.12 y2 z + 3.584 z2 + 3.84 x z2 + 1. x2 z2
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In[  ]:= ContourPlot3D [ts3 ⩵ 0, {x, -8, 8}, {y, -8, 8}, {z, -8, 8}, Mesh → None, ImageSize → Small ]

Out[  ]=

In[  ]:= ts3x = FLTNS [ts3, ixTransform3D , {x, y, z}];

ts3y = FLTNS [ts3, iyTransform3D , {x, y, z}];

ts3z = FLTNS [ts3, izTransform3D , {x, y, z}];

In[  ]:= {ContourPlot3D [{ts3x ⩵ 0, x ⩵ 0}, {x, -.1, .2},

{y, -20, 20}, {z, -20, 20}, Mesh → None, MaxRecursion → 4],

ContourPlot3D [{ts3y ⩵ 0, y ⩵ 0}, {x, -20, 20}, {y, -2, 2}, {z, -20, 20},

Mesh → None, MaxRecursion → 4], ContourPlot3D [{ts3z ⩵ 0, z ⩵ 0},

{x, -20, 20}, {y, -20, 20}, {z, -.1, .2}, Mesh → None, MaxRecursion → 4]}

Out[  ]=  , , 

1.9Projective  Surfaces
I will  continue  with  naive  and  parametric  surfaces  but  now  these  surfaces  will  be  projective  surfaces  in 

projective  real  3 space  ℝℙ3.  Unless  otherwise  noted   ℝℙ3 will  just  be  denoted  ℙ3  in this  chapter.   For  

reasons  outlined  below  one  should  use  the  GlobalFunctionsNS.nb  dated  June  2022  or later  rather  than  

earlier  versions  of Global  Functions.

1.9.1 Projective 3 - space
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As I have  done  in my  Plane  Curve  Book  and  Space  Curve  Book  I will  write  affine  points  as triples,  

p = {a, b, c} and  infinite  points  as quadruples  {a, b, c, 0}. Alternately  I may  write  the  affine  point  as a 

projective  point  p = {a, b, c, 1} .  Two  affine  points  are  equal  if they  have  the  same  components  but  the  

projective  points  as quadruples  are  homogeneous  in the  sense  that  

{a, b, c, d} = r {a, b, c, d} = {r a, r b, r c, r d} for  any  non-zero  real  number.  Note  that {0, 0, 0, 0}  is not  a

projective  point,  at least  one  component  must  be  non-zero.

In my  previous  books  I considered  infinite  points  as directions  in a general  sense,  an arrow  with  no  base  

point  or length  which  could  have  arrow  head  on  either  end  or both.   Parallel  arrows  were  equivalent.   In 

this  book,  however,  I want  to consider infinite  points  as no  different  from  other  points,  just  points  we  

can’t  see  on  ordinary  2D  or 3D  graphics.  So  I will  call  a point  of the  form {a, b, c, 0}  an invisible  point.

The  set  of invisible  points  form  a projective  plane  in the  sense  of my  plane  curve  book.   It should  be 

noticed  that  unlike  the  surfaces  in Chapter  1 this  is a one  sided,  non-orientable,   surface.   If we  use  

coordinates  {x, y, z, w} for  general  points  then  this  plane  is given  by w = 0. Actually  any  plane  in ℙ3 

given  by an equation  a x + b y + c z + d w = 0 is a copy  of the  projective  plane  and  its  complement  is a 

copy  of the  ordinary  affine  3-space ℝ3 and  will  be  called  a specialization of ℙ3. Unfortunately  there  is no

standard  way  to give  affine  coordinates  unless  it is the  complement  of the   plane  w = 0.  For  this  reason  

we will  not  use  specializations  in general  directly,  rather  we  will  specify  them  by transformations  of 

ordinary  ℝ3 via  my  FLT’s  in the  next  section.   Among  other  reasons  this  will  allow  us to directly  use  

Mathematica  algorithms  designed  for  3D,  either  the  built-in  ones  or ones  in my  Global  Functions  

notebooks  marked  3D  or MD.   Thus  rather  than  work  directly  in ℙ3as is o�en  done  in the  literature,  for  

example  the  book  by Joe  Harris.   As  we  have  seen  in the  space  curve  book  Harris  can  do  nice  theory  but  

his  book  is short  of computations  and  examples.

Because  of the  homogeneity  of projective  points  in ℙ3 in order  to define  projective  algebraic  subsets  we  

need  to use  homogeneous  equations.   These  are  sums  of monomials  in X, Y, Z and  W  or other  conve -

nient  letters,  all  monomials  of the  same  degree.   O�entimes  we  will  get  lazy  as in the  previous  para -

graph  and  just  use  lower  case  letters  but  the  upper  case  letters  will  emphasize  that  these  variables,  or  

more  precisely  the  homogeneous  polynomial  they  denote,  are  homogeneous.   This  means  that  an 

equation  such  as 

W2 + 2 W X - 5 X2 + 3 W Y - 6 X Y + 7 Y2 - 4 W Z + 8 X Z + 9 Y Z + 10 Z2 = 0

is well  defined   as multiplying  each  variable  by r ≠ 0 not  change  the  validity  of this  equation.   But  note  

that  we  may  not  evaluate  an expression  such  as the  le�  hand  side  of the  above  equation  at an arbitrary  

projective  point  because  if the  result  is not  zero  then  it will  depend  on  r.  In particular  algebraic  sets  

defined  by homogeneous  equations  do  not  have  a positive  or negative  side  unlike  the  affine  case.   Thus  

surfaces  defined  by a homogeneous  equation  may  be one-sided,  such  as the  invisible  plane  W = 0.

As in my  Plane  Curve  Book  given  an affine  polynomial  equation  we  can  homogenize  it to get  a homoge -

neous  equation.   While  the  function  homogMD  still  exists  in my  Global  Functions  notebook  the  follow -

ing  version  is preferable  as the  capitalized  variables  remind  one  that  we  are  working  homogeneously.   

In this  book  we  will  change  our  syntax  of functions  identified  by suffix  NS  so the  set  of variables  will  be  
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denoted  v or  V to distinguish  from  the  homogeneous  variable  X.  This  change  is actuated  in GlobalFunction
sNS.nb.

In[  ]:= HomogNS [f_, v_, V_] := Module [{h, fass, hrl, deg},

If[Length [V] ≠ Length [v] + 1, Echo ["List X must have length one more than list x"];

Abort []];

fass = Association [CoefficientRules [f, v]];

deg = Max[Total [#] & /@ Keys [fass ]];

hrl = Table [Append [k, deg - Total [k]] → fass [k], {k, Keys [fass ]}];

FromCoefficientRules [hrl, V]]

In[  ]:= f = 1 + 2 x + 3 y - 4 z - 5 x^2 - 6 x y + 7 y^2 + 8 x z + 9 y z + 10 z^2;

In[  ]:= hf = HomogNS [f, {x, y, z}, {X, Y, Z, W}]

Out[  ]= W2 + 2 W X - 5 X2 + 3 W Y - 6 X Y + 7 Y2 - 4 W Z + 8 X Z + 9 Y Z + 10 Z2

We  still  have  problems  with  affine  equations  that  are  already  homogeneous.

In[  ]:= HomogNS [x^2 + y^2 - z^2, {x, y, z}, {X, Y, Z, W}]

Out[  ]= X2 + Y2 - Z2

as this  looks  like  a curve  in ℝ2 rather  than  a surface  in ℙ3  although  the  capitalized  variables  indicate  

they  should  be regarded  as homogeneous  and  defined  only  up  to a constant  multiple.  Again  using  FLT  

so as to continue  working  affinely  is the  best  solution.

An affine  surface  is imbedded  in its  homogenization  by the  map  {x, y, z}↦ {X , Y , Z, 1}

Consider  the  somewhat  random  point  

In[  ]:= p = {2.`, 3.764709339686058` , -2.773802258655994` }

Out[  ]= {2., 3.76471, -2.7738 }

In[  ]:= f /. Thread [{x, y, z} → p]

Out[  ]= 0.

In[  ]:= hf /. Thread [{X, Y, Z, W} → Append [p, 1]]

Out[  ]= 0.

1.9.2 Specialization  and Invisible  Points

Homogenization  introduces  new  points  with  last  coordinate  zero.   But  projective  space  is homoge -

neous  in the  sense  that  all  points  are  the  same,  further,  as a topological  space  projective  space  is 

compact.   Therefore  it is in some  ways  not  appropriate  to call  the  new  points  infinite. So  I adopt  the  

notation  invisible points  as these  new  points  do  not  show  up  on  a contour  plot.

The  opposite  of homogenization  is specialization.   We  can  declare  any  plane  aX + bY + cZ + dW = 0 in 

projective  space  to be the  set  of invisible  points  by removing  them.   A copy  of affine  ℝ3 remains.   The  
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default  specialization  is simply  W = 0  leaving  the  original  affine  space.  

If, however,  we  have  a projective  surface  given  by a homogeneous  equation  in {X,Y,Z,W},  that  plane  we  

remove  generally  has  intersected  the  projective  surface  in a plane  curve,  possibly  in a finite  or even

empty  set.    This  I call  the  invisible  curve.  One  wants  to identify  this  curve,  or  point  set.   It is important  to 

note  that  this  is still  a curve  or point  set  in projective  space.   One  way  to think  of it as  being  in affine  

space  is to normalize,  and  one  way  to do  this  is to declare  aX+bY+cZ+dW=1

I take,  as my  example,  the  hyperboloid

In[  ]:= h = x^2 + y^2 - z^2 - 1;

Homogenizing  we  get

In[  ]:= H = HomogNS [h, {x, y, z}, {X, Y, Z, W}]

Out[  ]= -W2 + X2 + Y2 - Z2

So the  infinite  curve  is 

In[  ]:= K = H /. {W → 0}

Out[  ]= X2 + Y2 - Z2

This  may  look  like  the  equation  of a cone  but  the  point   {1,0,1,0}  is the  same  as {2,0,2,0}  etc.   One  way  to 

convert  this  equation  to something  that  looks  like  an affine  curve  is to normalize.   We  can  normalize  by 

setting  any  fixed  but  arbitrary  homogeneous  equation,  other  than  the  one  we  are  considering,  to 1.    In 

this  example  the  easiest  is to set  Z=1.     So  we  have  the  affine  equation  x2 + y2 = 1.  Actually  what  we  

really  have  is a correspondence

{x, y}⟺ {X, Y, 1}

from  points  on  the  affine  curve  x2 + y2 = 1 to homogeneous  points  {X,Y,1}  on  X 2 + Y 2 - Z2 = 0, Z = 1  In 

this  way  we  may  think  of the  infinite  curve  of the  hyperboloid  as a circle.

1.9.3 Infinite Points and curves

We  may  notice  that  the  equation  we  get  for  the  infinite  curve  of a naive  surface  is,  with  the  possible  

exception  of using  different  variable  names  for  affine  and  projective  equations,  simply  the  maximal  

form  of the  affine  equation.   For  example

In[  ]:= maxFormMD [x^2 + y^2 - z^2 - 1, {x, y, z}]

Out[  ]= x2 + y2 - z2

This  is homogeneous  so we  can  take  one  representative  for  a homogeneous  point  and  normalize  it 

someway,  append  a zero  to get  a 4-tuple  and  call  this  an infinite  point  as I did  for  my  previous  books.   

An easy  way  to normalize  is use  the  Mathematica  function  Normalize.   This  is equivalent  to homoge -

neous  point  on  the  maximal  form  as a line  and  intersecting  the  line  with  the  unit  sphere  in ℝ3, but  we  

get  two  antipodal  points  this  way.   This  leads  to a nice  way  to illustrate  the  infinite  curve  of an naive  

affine  surface:   Plot  the  maximal  form  and  the  unit  sphere  in the  same  plot.   The  infinite  curve  is then  
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the  intersection  if one  mentally  associates  each  point  with  its  antipodal  point.   For  example  the  infinite  

curve  of the  standard  hyperboloid  can  be shown  by 

In[  ]:= p = Normalize [{1, 1, Sqrt [2]}]

Out[  ]= 
1

2
,
1

2
,

1

2



In[  ]:= Show [ContourPlot3D [{x^2 + y^2 - z^2 ⩵ 0, x^2 + y^2 + z^2 ⩵ 1},

{x, -1, 1}, {y, -1, 1}, {z, -1, 1}, Mesh → None,

ContourStyle → {Orange, LightGray }], Graphics3D [{Blue, Ball [p, .05]}]]

Out[  ]=

Thus  the  infinite  curve  is shown  twice,  once  as the  circle  of intersection  of the  two  surfaces  at the  top  of 

the  plot  and  with  a copy  at the  bottom.   Notice  the  infinite  point  indicated  at the  blue  dot  is properly  

written  as  1

2
,

1

2
,

1

2
, 0 using  this  formulation.

The  hyperbolic  ellipsoid  x2 + y2 - z2 + 1 = 0 has  the  same  maximal  form  so we  would  get  the  exact  same  

picture.   We  can  do,  by  homogeneity,  the  following  to distinguish  these  plots  since  the  maximal  forms  

differ  from  the  equations  by only  a small  constant.
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In[  ]:= {ContourPlot3D [{x^2 + y^2 - z^2 ⩵ 1, x^2 + y^2 + z^2 ⩵ 100},

{x, -10, 10}, {y, -10, 10}, {z, -10, 10}, Mesh → None,

ContourStyle → {Orange, Directive [Orange, Opacity [.5]], Gray}],

ContourPlot3D [{x^2 + y^2 - z^2 ⩵ -1, x^2 + y^2 + z^2 ⩵ 100},

{x, -10, 10}, {y, -10, 10}, {z, -10, 10}, Mesh → None,

ContourStyle → {Orange, Directive [Orange, Opacity [.5]], Gray}]}

Out[  ]=  , 

Some  may  prefer  the  hemisphere  plots  of the  plane  curve  book,  then  the  only  points  which  appear  

twice  are  those  on  the  xy-plane.   Here  we  illustrate  with  the  saddle  surface  z = xy (see  Chapter  2) which  

has  maximal  form  x y.  Here  because  the  maximal  form  differs  by a linear  function  the  plot  (le�)  includ -

ing  the  actual  function  does  not  make  sense

In[  ]:= {Labeled [ContourPlot3D [{z - x y ⩵ 0, x^2 + y^2 + z^2 ⩵ 100},

{x, -10, 10}, {y, -10, 10}, {z, 0, 10}, Mesh → None,

ContourStyle → {Orange, Directive [Orange, Opacity [.5]], Gray}], "Wrong"],

Labeled [Show [ContourPlot3D [{x y ⩵ 0, x^2 + y^2 + z^2 ⩵ 1}, {x, -1, 1}, {y, -1, 1},

{z, 0, 1}, Mesh → None, ContourStyle → {Orange, Directive [Orange, Opacity [1]], Gray}],

Graphics3D [{Blue, Ball [{0.274721 , 0., 0.961524 }, .05],

Ball [{0.`, -0.9486832980505138` , 0.31622776601683794` }, .05]}]], "Correct"]}

Out[  ]= 

Wrong

,

Correct



When  normalizing  using  the  sphere  a great  circle  represents  a line.   So  in this  case  the  infinite  curve  is 

equivalent  to the  homogeneous  curve  X Y .  Note  a typical  point  on  the  surface  x y = 0 might  be  {2,0,7}  or  

{0,-3,1)  so they   would  normalize  q1=  ={0.274721,0.,0.961524}   or  q2  ={0.,-0.948683,0.316228}  ans  so as 
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infinite  points  would  be {0.274721,0.,0.961524,0}  or {0.,0.948683,0.316228,0}.

The  infinite  curve  can  contain  more  than  one  connected  component.   Here  is an example

In[  ]:= f1 = -0.9332667921277373` - 0.54659406197207` x + 1.6228493544271605` x2 -

0.6266424651018005` x3 - 0.15904113742115739` y - 0.15141560817564875` x y +

1.7516424651018003` x2 y - 0.5139019915209658` y2 + 2.3341742198323487` x y2 +

0.9558892896287468` y3 + 0.08847551097802434` z - 0.7608711515528794` x z +

2.763901991520963` x2 z - 0.9825589880399126` y z + 2.728765877365271` x y z +

1.0139019915209662` y2 z - 0.16582578016764984` z2 + 0.8521234122634711` x z2 +

0.019591657532924106` y z2 + 0.010617061317362703` z3 - 1

Out[  ]= -1.93327 - 0.546594 x + 1.62285 x2 - 0.626642 x3 - 0.159041 y -

0.151416 x y + 1.75164 x2 y - 0.513902 y2 + 2.33417 x y2 + 0.955889 y3 +

0.0884755 z - 0.760871 x z + 2.7639 x2 z - 0.982559 y z + 2.72877 x y z +

1.0139 y2 z - 0.165826 z2 + 0.852123 x z2 + 0.0195917 y z2 + 0.0106171 z3

The  infinite  curve  is

In[  ]:= f1i = HomogNS [f1, {x, y, z}, {X, Y, Z, W}] /. {W → 0}

Out[  ]= 0. - 0.626642 X3 + 1.75164 X2 Y + 2.33417 X Y2 + 0.955889 Y3 + 2.7639 X2 Z +

2.72877 X Y Z + 1.0139 Y2 Z + 0.852123 X Z2 + 0.0195917 Y Z2 + 0.0106171 Z3

In[  ]:= ContourPlot3D f1i ⩵ 0, X2 + Y2 + Z2 ⩵ 1,
{X, -1.2, 1.2}, {Y, -1.2, 1.2}, {Z, -1.2, 1.2}, Mesh → None 

Out[  ]=

  Since  this  is a real  projective  plane  curve  then  Harnack's  theorem   [See  Plane  Curve  Book,  Chapter  9] 

applies.   If the  degree  of this  curve  is d  then  the  number  of topological  components  in the  projective  

plane  must   be  less  than  or equal  to   compd = (d - 1) (d - 2) /2 + 1.  Harnack  himself  noted  that  plane  

curves  of degree  d with   compd  components  do  exist,  these  are  called  M-curves.   Here  is how  to make  a 

naive  surface  of degree  d such  that  the  infinite  curve  has  compd components  if one  knows  an M-curve  
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for  this  degree  [See  discussion  in Section  9.2  of Curve  Book].

We  start  with  a plane  curve  f  of  degree  d  with  compd components.   We  get  a naive  surface  g by  apply -

ing  HomogNS  to f , note  the  plane  z - 1 intersects  this  surface  in f .  Apply  the  iTransform[z-1]  to get  a 

curve  with  this  infinite  curve.   Here  is an example.

Start  with  the  plane  curve

In[  ]:= f2 = 17 - 20 x2 + 4 x4 - 20 y2 + 17 x2 y2 + 4 y4;

In[  ]:= ContourPlot [f2 ⩵ 0, {x, -3, 3}, {y, -3, 3}, ImageSize → Small ]

Out[  ]=

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

This  curve  has  4 components  .  Set

In[  ]:= F2 = HomogNS [f2, {x, y}, {x, y, z}]

Out[  ]= 4 x4 + 17 x2 y2 + 4 y4 - 20 x2 z2 - 20 y2 z2 + 17 z4

Now  we  transform  it,  and  to eliminate  the  singular  point  subtract  1.  This  is our  example

In[  ]:= F2i = FLTNS [F2, iTransform3D [z - 1], {x, y, z}] - 1

Out[  ]= -0.432084 - 4.52473 x + 11.5184 x2 - 10.6228 x3 + 2.53341 x4 - 4.52473 y +

21.0991 x y - 21.2329 x2 y + 1.10256 x3 y + 11.5184 y2 - 21.2329 x y2 + 22.1383 x2 y2 -

10.6228 y3 + 1.10256 x y3 + 2.53341 y4 + 0.622306 z - 7.35632 x z + 20.4645 x2 z -

14.2865 x3 z - 7.35632 y z + 42.0023 x y z - 19.3594 x2 y z + 20.4645 y2 z -

19.3594 x y2 z - 14.2865 y3 z - 1.0758 z2 + 2.43598 x z2 + 6.33598 x2 z2 + 2.43598 y z2 +

22.203 x y z2 + 6.33598 y2 z2 - 0.647809 z3 + 5.66146 x z3 + 5.66146 y z3 + 0.755609 z4

In[  ]:= ContourPlot3D [F2i ⩵ 0, {x, -5, 5}, {y, -5, 5}, {z, -5, 5}, Mesh → None, ImageSize → Small ]

Out[  ]=
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The  infinite  curve  is

In[  ]:= F2ic = HomogNS [F2i, {x, y, z}, {X, Y, Z, W}] /. {W → 0}

Out[  ]= 0. + 2.53341 X4 + 1.10256 X3 Y + 22.1383 X2 Y2 + 1.10256 X Y3 + 2.53341 Y4 -

14.2865 X3 Z - 19.3594 X2 Y Z - 19.3594 X Y2 Z - 14.2865 Y3 Z + 6.33598 X2 Z2 +

22.203 X Y Z2 + 6.33598 Y2 Z2 + 5.66146 X Z3 + 5.66146 Y Z3 + 0.755609 Z4

We  more  clearly  see  the  components  in the  hemisphere  plot

In[  ]:= ContourPlot3D [{F2ic ⩵ 0, X^2 + Y^2 + Z^2 ⩵ 25},

{X, -5, 5}, {Y, -5, 5}, {Z, 0, 5}, Mesh → None, ImageSize → Small ]

Out[  ]=

1.9.4 Orientable  and non orientable  surfaces

As we  pointed  out  in Section  1.2  above  to even  talk  about  being  orientation  ,  one  or two  sided,  we  need  

a smooth  surface,  otherwise  there  could  be many  “sides”.    A necessary  condition  for  being  orientable  is 

that  each  projective  line,  not  lying  in the  surface,  must  meet  the  surface  in an even  number  of projec -

tive  points  counted  by multiplicity.   In particular,  a naive  surface  of affine  degree  d  will  be  orientable  if 

d is even,  for  example  quadric  surfaces,  and  one-sided   if d is odd,  for  example  cubic  surfaces.   Some  

care  is needed  for  parametrically  defined  surfaces.

1.9.5 Parametric  curves and Surfaces  in Projective  Space

Given  a rational  parametric  surface  there  are  two  issues  going  to projective  space.   The  first  is a missing  

region  where  the  parameters,  say  s, t, go  to infinity.   One   solution  is to just  plot  with  a large  range  for  

the  variables.   We  will  look  at several  examples

The  paraboloid  is given  by (see  Chapter  2)

In[  ]:= parParab = 
2 t

1 + t^2
s,

1 - t^2

1 + t^2
s, s^2;
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In[  ]:= Show [ParametricPlot3D [parParab , {t, 0, 10}, {s, -10, 10}, Mesh → None ],

ParametricPlot3D [{0, t, t^2}, {t, -10, 10}, PlotStyle → Thickness [.01]]]

Out[  ]=

The  plot  shows  the  missing  curve  appears  to be  the  parametric  parabola {0, t, t ^ 2}.

In[  ]:= ParametricPlot3D [parParab , {t, -10, 10}, {s, -10, 10}, Mesh → None ]

Out[  ]=

However  using  negative  values  of t this  parameterization  is not  1-1  so the  missing  region  disappears.

Another  example  is the  sphere  with  parameterization

In[  ]:= parSphere = 
1 - t2 × 2 s

1 + t2 × 1 + s2
,

1 - t2 × 1 - s2
1 + t2 × 1 + s2

,
2 t 1 + s2

1 + t2 × 1 + s2
;

In[  ]:= {ParametricPlot3D [parSphere , {t, -4, 4}, {s, -4, 4}, Mesh → None,

MaxRecursion → 5, Axes → False ], ParametricPlot3D [parSphere ,

{t, -16, 16}, {s, -16, 16}, Mesh → None, MaxRecursion → 5, Axes → False ]}

Out[  ]=  , 

Here  is the  missing  region  is  a rectangle.

For  the  hyperboloid
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In[  ]:= parHyp = 
t - s^2 t

1 - s^2
,
1 + s2 - 2 s t

1 - s2
,
2 s - t - s2 t

1 - s2
;

In[  ]:= ParametricPlot3D [parHyp, {t, -30, 30}, {s, -30, 30}, PlotRange → Full ]

Out[  ]=

The  missing  curve  is the  the  union  of two  lines,  but  this  parametric  representation  does  not   do  a good  

job  of showing  the  surface.   We  do  have  a better  parameterization  of the  saddle  surface,  however.

parSS = 
1 + s t

-1 + s t
,

s - t

-1 + s t
,

s + t

-1 + s t
;

In[  ]:= ParametricPlot3D [parHyp2, {t, -20, 20}, {s, -20, 20}, Mesh → None ]

Out[  ]=

If you  really  want  to plot  the  hyperboloid  parametrically  [Van  Seggern]  suggests  the  parameterization  

as a surface  of revolution  
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In[  ]:= ParametricPlot3D [

{{u Cos[v], u Sin[v], Sqrt [u^2 - 1]}, {u Cos[v], u Sin[v], -Sqrt [u^2 - 1]}}, {u, 0, 5}, {v, -Pi, Pi}]

Out[  ]=

The  second  issue  is the  infinite  curve.   Some  infinite  points  may  arise  when  one  or both  parameters  go 

to infinity.    Otherwise  infinite  points  may  arise  when  the  denominators  become  zero.   One  can  find  

some  examples  of infinite  points  by normalizing  points  with  large  parameters  or parameters  making  

the  denominator  small,  but  it is hard  to get  an equation  out  of this.   It is better  to implicitize  the  surface  

and  calculate  the  infinite  points  from  that.

1.10 Lines  on a Projective Surface through a Given Point.
In chapter  2 many  quadric  surfaces  will  be  ruled  surfaces  which  implies  each  point  is contained  in one  

or several  lines  of the  surface.   I show  how  to find  them  and  their  infinite  points.

1.10 .1 The method

We  start  with  a smooth  real  affine  point  p on  a naive  surface  and  find  the  parametric  equation  of the  

real  line  if it exists.   We  first  find  the  tangent  plane  with  the  global  function  tangentPlaneNS and  then  

intersect  this  plane  with  our  surface  using  NSolve.  If this  intersection  is empty  or imaginary  there  is no  

real  line  otherwise  there  may  be one  or more  lines.   For  each  solution  q ≠ p a possible  line  will  have  

parametric  equation  line  = p + t (q - p) which  gives  the  point  p for  t = 0 and  q for  t = 1.  In Chapter  2 if 

q ≠ p exists  the  quartic  surface  contains  this  line.    Otherwise  we  may  wish  to check   d - 2 additional  

values  of t to be  sure  we  have  a line.

An important  comment  is that  when  we  intersect  the  the  tangent  plane  and  surface  we  get  an underde -

termined  system.   There  should  be at least  one  solution,  the  point  p, but  to get  a line  we  need  a solu -

tion  different  from  p.  Mathematica should  give  a warning  message  and  will  provide  a pseudo-random  

rational  linear  equation  to obtain  a finite  solution  set.   I discuss  this  in  section  2.3  of my  Plane  Curve  

Book.  This  should  be sufficient  but,  as I warn,  not  always.   Unfortunately  these  pseudo  random  linear  

equations  are  set  at the  initialization  stage  of each  Mathematica  session,  the  good  thing  is that  if you  re-

run  the  example  during  a given  session  you  will  get  the  same  answer,  but  the  down  side  is that  if this  
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pseudo-random  equation  does  not  give  a desired  result  then  it is not  enough  to just  re-run,  you  need  to

provide  your  own,  preferably  machine  number,  linear  equation  as a third  equation.    Incidentally,  this  is 

one  reason  I don’t  provide  a global  function  to find  these  lines.   Also  note  that  the  chances  are  that  the  

original  point  is not  on  this  pseudo-random  or random  plane  so the  points  returned  will  be  generally  

different  from  p,  so if there  is no  line  may  be returned.

 Here  are  some  examples.

 Let  S be  the  surface   Si = 0 where

In[  ]:= S1 = x^2 + y^2 + z^2 - 1;

p1 = 
9

11
,

2

11
, -

6

11
;

In[  ]:= S1 /. Thread [{x, y, z} → p1]

Out[  ]= 0

In[  ]:= tp1 = tangentPlaneNS [S1, p1, {x, y, z}]

Out[  ]= -2 +
18 x

11
+
4 y

11
-
12 z

11

In[  ]:= NSolveValues [{S1, tp1}, {x, y, z}, Reals ]

NSolveValues : Infinite solution set has dimension at least 1. Returning intersection of solutions with

-
69046 x

57903

-
142003 y

115806

+
40299 z

38602

== 1.

Out[  ]= {}

So there  is no  real  line   as expected.

Second  example

In[  ]:= S2 = x^3 - y^3 + z^4 - 1;

p2 = {-0.8825870838315157` , 1.5`, -1.5`};

tp2 = tangentPlaneNS [S2, p2, {x, y, z}]

Out[  ]= -8.0625 + 2.33688 x - 6.75 y - 13.5 z

In[  ]:= sol2 = NSolveValues [{S2, tp2}, {x, y, z}]

NSolveValues : Infinite solution set has dimension at least 1. Returning intersection of solutions with

-
69046 x

57903

-
142003 y

115806

+
40299 z

38602

== 1.

Out[  ]= {{-24.1402, 13.042, -11.2969 }, {0.122201 , -0.99938, -0.076379 },

{-0.465712 - 1.1209 ⅈ, -0.659138 + 0.648697 ⅈ, -0.348269 - 0.518379 ⅈ},
{-0.465712 + 1.1209 ⅈ, -0.659138 - 0.648697 ⅈ, -0.348269 + 0.518379 ⅈ}}

Pick  the  second  real  point  to get  line
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In[  ]:= lS2 = p2 + t (sol2〚2〛 - p2)
Out[  ]= {-0.882587 + 1.00479 t, 1.5 - 2.49938 t, -1.5 + 1.42362 t}

In[  ]:= S2 /. Thread [{x, y, z} → (lS2 /. t → .8)]

Out[  ]= -0.858857

So this  line  in not  in the  surface  .  The  picture  is

In[  ]:= Show [ContourPlot3D [{S2 ⩵ 0}, {x, -4, 2}, {y, -1, 2}, {z, -2, 0}, Mesh → None ],

ParametricPlot3D [lS2, {t, -1, 2}, PlotStyle → Blue ],

Graphics3D [{{Black, Ball [p2, .07]}, {Red, Ball [sol2〚2〛, .06]}}],

Axes → None, Boxed → False, ImageSize → Small ]

Out[  ]=

This  line  is locally  almost  in the  surface  S2 but  then  diverges  from  the  surface  but  intersects  it transver -

sally  at the  point  sol2[[2]].

Here  are  some  examples  where  we  do  get  lines  in the  surface.   The  third  example  is the  standard  

hyperboloid

In[  ]:= S3 = x^2 + y^2 - z^2 - 1;

p3 = {2.952497092684046` , -1.1325903574074156` , 3.`}

Out[  ]= {2.9525, -1.13259, 3.}

In[  ]:= tp3 = tangentPlaneNS [S3, p3, {x, y, z}]

Out[  ]= -2. + 5.90499 x - 2.26518 y - 6. z

In[  ]:= sol3 = NSolveValues [{S3, tp3}, {x, y, z}]

NSolveValues : Infinite solution set has dimension at least 1. Returning intersection of solutions with

-
69046 x

57903

-
142003 y

115806

+
40299 z

38602

== 1.

Out[  ]= {{2.9525, -1.13259, 3.}, {2.9525, -1.13259, 3.}}

We  get  the  original  point  back  with  multiplicity  2 as warned  earlier.

In[  ]:= sol3 = NSolveValues [S3 ⩵ 0 && tp3 ⩵ 0 && RandomReal [{-1, 1}, 3].{x, y, z} ⩵ 1, {x, y, z}]

Out[  ]= {{-1.79925, 2.77359, -3.15121 }, {-0.225929 , -0.990923 , -0.181582 }}
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In[  ]:= ls3a = p3 + t (sol3〚1〛 - p3)
ls3b = p3 + t (sol3〚2〛 - p3)

Out[  ]= {2.9525 - 4.75175 t, -1.13259 + 3.90618 t, 3. - 6.15121 t}

Out[  ]= {2.9525 - 3.17843 t, -1.13259 + 0.141668 t, 3. - 3.18158 t}

In[  ]:= Show [ContourPlot3D [x^2 + y^2 - z^2 ⩵ 1, {x, -4, 4}, {y, -4, 4}, {z, -4, 4}, Mesh → None ],

Graphics3D [{{Black, Ball [p3, .15]}, {Red, Ball [sol3〚1〛, .15], Ball [sol3〚2〛, .15]}}],

ParametricPlot3D [{ls3a, ls3b}, {t, -1, 4}, PlotStyle → Blue ],

Axes → None, Boxed → False, ImageSize → Small ]

Out[  ]=

We  get  two  lines  on  the  surface  through  this  point  .  We  will  discuss  further  in Chapter  2.

For  our  last  example  we  jump  ahead  to section  3.8  where  we  discuss  the  famous  Clebsch  Diagonal  

Cubic  which  has  7 Eckart  points  which  are  each  contained  in three  surface  lines  through  the  point.   Here  

is one,  p4.

In[  ]:= S4 = 81 (x^3 + y^3 + z^3) - 189 (x^2 y + x^2 z + y^2 x + y^2 z + z^2 x + z^2 y) +

54 x y z + 126 (x y + x z + y z) - 9 (x^2 + y^2 + z^2) - 9 (x + y + z) + 1;

p4 = {1 / 3, 1 / 3, 1 / 3};

Note  this  is a point  on  the  surface  .

In[  ]:= S4 /. Thread [{x, y, z} → p4]

Out[  ]= 0

In[  ]:= tp4 = tangentPlaneNS [S4, p4, {x, y, z}]

Out[  ]= 24 - 24 x - 24 y - 24 z

In[  ]:= sol4 = NSolveValues [{S4, tp4}, {x, y, z}, Reals ]

NSolveValues : Infinite solution set has dimension at least 1. Returning intersection of solutions with

-
69046 x

57903

-
142003 y

115806

+
40299 z

38602

== 1.

Out[  ]= {{43.5121, -42.8454, 0.333333 },

{0.333333 , -0.30901, 0.975676 }, {-0.31871, 0.333333 , 0.985376 }}
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Here  we  get  3 solutions  different  from  our  chosen  point  so 3 possible  lines.

In[  ]:= ls4a = p4 + t (sol4〚1〛 - p4)
ls4b = p4 + t (sol4〚2〛 - p4)
ls4c = p4 + t (sol4〚3〛 - p4)

Out[  ]= 
1

3
+ 43.1787 t,

1

3
- 43.1787 t, 0.333333 

Out[  ]= 0.333333 ,
1

3
- 0.642343 t,

1

3
+ 0.642343 t

Out[  ]= 
1

3
- 0.652043 t, 0.333333 ,

1

3
+ 0.652043 t

We  should  check  an additional  random  point  on  each  line  to see  if they  actually  lie  in the  surface,  we  

leave  this  to the  reader,  but  give  a plot.

In[  ]:= Show [ContourPlot3D [S4 ⩵ 0, {x, 0, 1}, {y, 0, 1}, {z, 0, 1}, Mesh → None ],

Graphics3D [{Black, Ball [{1 / 3, 1 / 3, 1 / 3}, .02]}], ParametricPlot3D [{ls4a, ls4b, ls4c},

{t, -2, 2}, PlotStyle → {Red, Blue, Green }], Axes → None, Boxed → False ]

Out[  ]=

Note  that  in section  3.8  we  give  a different  method  of finding  lines  on  the  surface  which  gives  all  such  

lines  at once  without  needing  to know  in advance  one  point  on  each.

1.10.2  Infinite  Points

In constructing  our  lines  we  used  the  general  parametric  equation  lp = p + t {q - p} where  p was  our  

given  point  and q was  a second  point  on  the  surface  and  tangent  plane  at p. From  considerations  of  

Section  1.9  we  see  the  infinite  point  of such  a line  is obtained  simply  by appending  a zero  to the  point  
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q - p.

For  our  example  we  consider  the  line  ls3a  of  example  S3 .  Here

In[  ]:= ls3a

Out[  ]= {2.9525 - 4.75175 t, -1.13259 + 3.90618 t, 3. - 6.15121 t}

where

In[  ]:= p3 - sol3〚1〛
Out[  ]= {4.75175, -3.90618, 6.15121 }

that  is,  the  three  coefficients  of t.  So  the  infinite  point  is 

In[  ]:= ip3a = Append [p3 - sol3〚1〛, 0]

Out[  ]= {4.75175, -3.90618, 6.15121, 0}

Note  that  the  homogenization  of S3  with  homogenizing  variable  w is 

In[  ]:= HS3 = x^2 + y^2 - z^2 - w^2;

In[  ]:= HS3 /. Thread [{x, y, z, w} → ip3a ]

Out[  ]= 1.42109 × 10-14

Note  also  if 

In[  ]:= q3 = ls3a /. t → 100

Out[  ]= {-472.222, 389.485, -612.121 }

Then

In[  ]:= Append q3  q3〚1〛 * ip3a〚1〛, 0
Out[  ]= {4.75175, -3.91921, 6.15948, 0}

is a good  approximation  to the  infinite  point  ip3a.

1.11 Overview of this book
In this  section  we  give  an overview  of the  later  chapters  in the  book.

1.11.2  Chapter  2, Quadric  Surfaces.

Here  we  discuss  surfaces  of degree  2.  In this  case  we  can  completely  classify  the  possibilities  up  to 

projective  linear  transformations.   A  nice  summary  chart  is 
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In particular  note  that  for  non  degenerate  surfaces  the  classification  hinges  on  the  number  of real  lines  

through  a point  on  this  surface  as discussed  in the  previous  section  1.10.   Surfaces  with  no  real  lines  are  

ellipsoids,   those  with  one  real  line  through  each  regular  point  are  cones  (cylinders),  and  those  with  2 

distinct  real  lines  through  each  point  are  hyperboloids.   Since  projective  linear  transformations  pre -

serve  lines  these  are  clearly  distinct  classes  under  these  transformations.   Less  obvious  is the  fact  that  

each  pair  of surfaces  in one  of these  classes  equivalent  under  projective  linear  transformations.   We  

show  this  in this  chapter.   In particular  the  saddle  surface   z = x y  is a hyperboloid  and  equivalent  to any  

hyperboloid  by a projective  linear  transformation.   This  does  not  seem  to be clearly  understood  in the  

literature.

Since  the  saddle  surface   and  cylinder  x2 + y2 = 1 clearly  have  a rational  parameterization  and  there  is 

a well  known  one  for  the  sphere  then  all  non-degenerate  quadric  surfaces  are  rational.

Later  in the  chapter  we  explore  symmetries  of the  ellipses  and  hyperbolas  and  find  that  besides  the  

obvious  ones  there  are  many  non-obvious  ones.
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1.11.3 Cubic surfaces.   

The  surprise  here  is that  while  all  smooth  cubic  surfaces  do  not  have  lines  through  every  point  but  do  

have  exactly  27 lines  in the  surface  counting  complex  lines  as well  as real  lines.   Further  they  all  have  

similar  configurations.   However  this  does  not  make  them  all  equivalent  under  projective  linear  transfor -

mations.   

Important  in the  study  of these  27 lines  is the  Schläfli  double  6 configuration.

Out[  ]=

12

11

10

9

8

7

1 2 3 4 5 6

This  configuration  of lines  appears  as a sub-configuration  of the  set  of all  lines  in any  smooth  cubic  

surface.   Given  such  a configuration  it is then  easy  to find  the  additional  15 lines.   Conversely  given  any  

such  configuration  of lines  we  can  derive  the  implicit  equation  giving  the  unique  cubic  surface  contain -

ing  these  lines.   In fact  the  discussion  of this  shows  that  we  only  need  6 of these  lines  to find  the  unique  

equation.   So  if we  find  one  line  L1 and  5 skew  lines  that  intersect  it,  call  them   L8,  L9,  L10,  L11  and  L12,  

then  already  we  have  enough  information  to find  the  unique  cubic  containing  them  and  the  remaining  

21 lines.

Alternatively,  given  the  cubic  surface  we  will  show  how  to find  all  the  lines  at once.   It turns  out  that  we  

can  find  a non-linear  system  of 4 equations  in 4 unknowns,  which  Mathematica  can  solve  in less  than  a 

second,  that  allows  us to find  parametric  equations  for  all  the  lines.   If we  are  interested  we  can  work  

backwards  to find  a double  6 configuration.

We  give  a famous  example,  known  as the  Clebsch  diagonal  cubic

cdc = 81 (x^3 + y^3 + z^3) - 189 (x^2 y + x^2 z + y^2 x + y^2 z + z^2 x + z^2 y) +

54 x y z + 126 (x y + x z + y z) - 9 (x^2 + y^2 + z^2) - 9 (x + y + z) + 1;

One  can  find  this  surface  mentioned  also  by going  to WolframAlpha  and  typing  in “clebsch diagonal  

cubic”  or MathWorld  at  https://mathworld.wolfram.com/ClebschDiagonalCubic.html
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1.11.4  Fourth Degree and Related Surfaces

In Chapter  4 we  look  at some  higher  degree  surfaces,  such  as the  torus.   Unfortunately,  unlike  quadric  

or cubic  surfaces  there  is no  overlying   structure.   Some  of these  surfaces,  such  as the  torus,  will  still  

have  infinite  symmetry  groups,  but  others  will  not.   One  of the  main  ideas  is to discuss  the  topic  of 

geometric  point  groups  they  include  the  the  well  known  crystallographic  point  groups.

  I, the  author,  will  mention  that  I was  exposed  to this  idea  as an undergraduate  math  student  in an 

abstract  algebra  class.   The  professor,  Paul  B.  Yale,  was  writing  a book  about  this  subject  during  the  

time  he was  teaching  the  class.   His  enthusiasm  for  the  subject  affected  my  future  as a mathematician.    

If not  for  him  I probably  would  not  be  writing  this  book  50 years  later.   I will  also  mention  John  C. Baez  

whose  wonderful  article  The  Octotonians in the  AMS  Bulletin,  April  2002,  rekindled  my  interest  in this  

subject.

 One  surface  we  will  study  is the  quartic  hyperboloid x4 + y4 - z4 = 1. which  does  have  a finite  algebraic  

symmetry  group.  This  comes  partly  from  the  fact  that  there  are  only  finitely  many  lines  in the  quartic

hyperboloid.

  Another  will  be  the  torus  and  surfaces  algebraically  equivalent  to this.    These  will  have  infinitely  many  

algebraic   symmetries.   We  will  construct  also  an  eighth  degree  double  torus.

1.11.5 Topology  and the topology  of complex  conic and cubic curves.

The  material  here  is somewhat  separate  from  the  rest  of the  book,  the  reader  only  needs  to be  familiar  

with  Chapter  1.  So  it can  be read  by itself.

The  major  point  in this  chapter  is that  the  sphere  and  projective  hyperboloid  are  topologically  distinct  

surfaces.   We  will  show  this  visually  using  the  chromatic  number.   But  the  the  projective  hyperboloid,  

including  variants  such  as the  projective  saddle  surface,  are  topologically  equivalent  to the  torus.   We  

prove  the  later  fact  by  explicit  invertible  continuous  transforms.

As an interlude  away  from  topology  I redo  some  of the  material  of Chapter  7 of my  Plane  Curve  Book.   In 

particular  I have  correct  normal  form  algorithms  for  smooth  conics  and  cubics.   The  normal  form  for  
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conics  is simply  y = x2, but  the  algorithm  gives  an actual  projective  linear  transform  taking  the  conic  to 

this  form.   For  the  cubics  I give  the  correct  Weierstrass  normal  form  y2 = 4 x3 - g2 x - g3  Here  the  

constants   g2, g3  characterize  the  cubics  under  projective  linear  equivalence.   So  here  the  normal  form  

algorithm  calculates  these  numbers  as well  as the  projective  linear  transform  connecting  the  original  

cubic  to it normal  form.

I then  use  this  material  to first  calculate  the  topology  of smooth  plane  conics  and  cubics.   This  material  

is known  since  the  topology  depends  only  on  the  genus  which  is 0 for  conics  and  1 for  cubics.   However  

my  explicit  approach  depends  on  the  earlier  results  in this  Chapter.   I show  that  the  complex  projective  

solution  set  of a conic  equation  is the  sphere,  something  I have  not  seemed  mentioned  explicitly  

elsewhere  while  it is well  known  since  the  early  1800’s  that  the  complex  projective  solution  set  of the  

cubic  is the  torus.   But  this  is usually  known  only  theoretically,  in this  chapter  I use  the  Mathematica  

implementation  of the  Weierstrass  P function  to give  explicit  maps  from  the  solution  set  to and  from  

the  torus.   In fact,  since  the  torus  is  topologically  equivalent  to the  saddle  surface  z = x y  any  pair  of 

real  numbers  gives  a solution,  usually  complex,  of the  cubic  equation.   Unlike  the  torus,  however,  some  

of the  real  points  of the  saddle  surface  are  infinite  so one  does  not  get  all  solutions  this  way  from  the  

affine  saddle  surface.

SSchapter1v2.nb    93



0.805458 - 0.996016 x + 4 x3 - y2 = 0

a

b

c

d

e

f

j
k

i

i

-2 -1 0 1 2 3

-6

-4

-2

0

2

4

6

"point " "solution f8" "saddle surface "

"a" {0.373058 , 0.800976 } {1.17821 , - 0.910332 , - 1.07256 }

"b" {0.0557982 , - 0.866358 } {7.05402 , 1.13234 , 7.98754 }

"c" {1.77165 , - 4.61346 } {2.84656 , - 2.19231 , - 6.24053 }

"d" {- 0.4, 0.973583 } {0.145976 , - 0.651173 , - 0.095056 }

"e" {1.33535 , 3. } {1.65126 , - 1.10044 , - 1.81711 }

"f" {- 0.719703 , - 0.176495 } {- 2.15759 , - 0.378341 , 0.816306 }

"g" {0.454513 - 0.21764 ⅈ, - 0.713384 + 0.197311 ⅈ} {3, 1.1, 3.3 }

"h" {0.249724 - 0.0718865 ⅈ, - 0.776975 - 0.0124136 ⅈ} {4, 1, 4}

"i" "infinite Point " {2.20657 , - 1.44126 , - 3.18024 }

"j" {- 0.339802 , - 0.993461 } "infinite Point "

"k" {0.427876 , - 0.832241 } "infinite Point "

"l" {- 1.21094 - 0.307908 ⅈ, - 1.12035 + 2.22907 ⅈ} {5, - 0.8, - 4}

"m" {- 0.0439841 - 0.17124 ⅈ, - 0.935075 - 0.0998141 ⅈ} {5, 0, 0}

"n" {- 0.293159 + 0.652481 ⅈ, - 1.61489 + 0.336897 ⅈ} {0, - 5, 0}

"o" {0.219746 + 0.391215 ⅈ, - 0.585984 + 0.343408 ⅈ} - 5 , - 5 , 5
"p" {- 0.0428533 + 0.392137 ⅈ, - 1.01089 + 0.30821 ⅈ} {- 2, - 6, 12 }

"q" {- 9.98835 - 0.196065 ⅈ, 1.85994 - 63.0407 ⅈ} {1.8, - 2, - 3.6 }

"r" {- 1.37753 + 0.802384 ⅈ, - 2.99584 - 2.57118 ⅈ} {1, - 7, - 7}
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