
Surface Story
Part I

Barry H Dayton

barryhdayton.space

0. Introduction
Surfaces are much more complicated than curves. For example Riemann defined genus of an alge -

braic curve in the 1850’s. But there was no genus of an algebraic surface until the 1950’s. The interim

was spent abstracting algebra and topology to build the tools for the general Riemann-Roch theorem.

Unfortunately the new abstract formulation, while impressive mathematically, gave little insight into

actual surfaces. Instead I will attempt to discuss surfaces not with abstractions but with Mathematica

algorithms.

In this story I will restrict my attention to surfaces which are either naive algebraic surfaces or surfaces

defined by a rational parameterization. In particular I will then be able to plot these surfaces, at least

locally, using Mathematica’s ContourPlot3D in the first case and ParametricPlot3D in the second.

Again my intention is to be visual and numerical rather than mathematically exact.

This book is addressed to readers of my Plane curve book and my Space Curve Book. In particular one

should be familiar with working with machine numbers in Mathematica. Other than that there will be

no prerequisite. Many of the functions used in this book are already in the Global Functions notebook

for my Space Curve book which already contains many of the Plane curve functions. There is an inclu -

sive GlobalFunctionsNS.nb notebook for this book. Global functions specifically for surfaces may

end in NS (naive surface) or RS (rational surface).

Belated Acknowledgement: This acknowledgment was le� out of the Plane Curve book by the edi -

tors, possibly inadvertently. I did not think to include it in the Space Curve Book. But it is time to give a

belated acknowledgement to Hugh J Hamilton who was my Professor in a year course in Advanced

Calculus at Pomona College in the 1964-65 academic year. Hamilton appeared to be a very precise and

thri�y little Scotsman who always wore a Scottish plaid tie and sports coat but he was active in the

Southern California Socialist party. His lecture style was to copy the textbook to the blackboard. He

especially emphasized the epsilons and deltas. But his unique characteristic was his tests, 2 or 3

problems asking for an essay style presentation of an application of the theory similar to my presenta -

tion of material in this book. Later he published the textbook A primer of Complex Variables with an

Introduction to Advanced Techniques , Brooks Cole Publisher, a completely heuristic book with hardly

an epsilon or delta. These books are motivated by his example.

2 SSchapter1v2.nb

Table of Contents
1. Chapter One

1.1. Naive Surfaces 4

1.2. Rational Parametric Surfaces 9

1.3. Implicit Equations for rational parametric surfaces 17

1.4. The Torus Story 24

1.5. Curves in Surfaces 39

1.6. Rational Points and Rational Surfaces 48

1.7. Trigonometric Parameterization 52

1.8. Fractional Linear Transformations 58

1.9. Projective Surfaces 73

1.10. Lines through a point in a surface 84

1.11. Overview of Book 89

References 95

The author makes no representations, express or implied, with respect to this documentation or so�ware it describes,

including, without limitation, any implied warranties of merchantability, interoperability or fitness for a particular

purpose, all of which are expressly disclaimed. Use of Mathematica and other related so�ware is subject to the terms

and conditions as described at www.wolfram.com/legal .

In addition to the forgoing, users should recognize that all complex so�ware systems and their documentation contain

errors and omissions. Barry H. Dayton and Wolfram Research a) shall not be responsible under any circumstances for

providing information or corrections to errors and omissions discovered at any time in this book or so�ware; b) shall

not be liable for damages of any kind arising out of the use of (or inability to use) this book or so�ware; c) do not

recommend the use of the so�ware for applications in which errors or omissions could threaten life, or cause injury

or significant loss.

Mathematica and Wolfram Language are trademarks of Wolfram Research Inc.

SSchapter1v2.nb 3

1. Introduction to Surfaces

1.1 Introduction to Naive Surfaces
A naive surface is a surface in ℝ3 which is the full zero set of a single polynomial equation f=f(x,y,z) in

three variables subject to a few conditions to be discussed later . For example the polynomial might be

ts3 = 1.752 - 6.4 x - 11.464 x2 + 0.64 x3 + x^4 + 1.536 y2 +

0.64 x y2 + x2 y2 + 2.88 x^2 z - 5.12 y^2 z + 3.584 z2 + 3.84 x z2 + x2 z2;

Analogously to Gauss' principle in my Plane Curve Book this zero set divides the plane into two sets

f + = {{x,y,z} | f (x , y, z) > 0 } and f - = {{x, y, z} f (x, y, z) < 0} which have the zero set of f as the complete

boundary. This allows us to recover this zero set, which we will o�en just call f , by looking for points

where the value of f (x,y,z) on neighboring points changes from positive to negative or vice versa. In

Mathematica this is obtained using the built-in function ContourPlot3D. For example we can visu -

alise a small part of the surface ts3 by

Out[]=

Plot 1.1a

Note that in this book I will generally use the option Mesh->None because we will o�en be drawing

curves on our surfaces. It is important to note that the boundary curves in this picture are simply the

curves where this surface meets the bounding box, they are not intrinsic to this surface. Note the 3

4 SSchapter1v2.nb

vertical lines colored green where ts3 > 0 and red where ts3 < 0. What we notice is that they are red

“inside” the surface and green “outside”. This shows that the surface is two sided with an inside and

outside. We talk about this more in a bit.

Note this plot changes as we change the bounding box or orientation. We can see more or less of the

surface or more or less detail.

In[]:= Pl1b = ContourPlot3D [ts3 ⩵ 0, {x, -10, 10}, {y, -10, 10}, {z, -10, 10}, Mesh → None];

In[]:= {Pl1b, Pl1b}

Out[]=  , 

Some things can go wrong . The equation x ^ 2 + y ^ 2 + z ^ 2 = 0 has only one solution, {0,0,0}. We call

equations that do not give a 2-dimensional figure degenerate. Also note that the equation ts3 2 = 0 has

the same solution set as ts3 = 0 but the contour plot

In[]:= ContourPlot3D ts32 ⩵ 0, {x, -10, 10}, {y, -10, 10}, {z, -10, 10}, Mesh → None 

Out[]=

is empty. This is because there is no sign change from positive to negative. Remember that since the

function ContourPlot3D is numerical, zero is not recognized as a number. So changes from positive

to zero are not detected. So to get a correct picture we must use square free polynomials only. Fortu -

nately we have a global function sqFreeMD, this will not only tell us if a polynomial is square free but if

it is not it will return a square free polynomial with the same solution set. Fortunately this function

does not require us to factor the polynomial so it works on numerical as well as integer polynomials.

Here is a more complicated problem that came up with a surface related to ts3, I call it ts2.

SSchapter1v2.nb 5

In[]:= ts2 = NExpand (-1 + z) × 48 - 80 x + 25 x2 + 16 z2

Out[]= -48. + 80. x - 25. x2 + 48. z - 80. x z + 25. x2 z - 16. z2 + 16. z3

When we try to plot ts2 we get the following

In[]:= ContourPlot3D [ts2 ⩵ 0, {x, -1, 4}, {y, -2, 2}, {z, -2, 2}, Mesh → None]

Out[]=

But this surface is the union of a plane and a cylinder so the plot should be

In[]:= ContourPlot3D z - 1 ⩵ 0, 48 - 80 x + 25 x2 + 16 z2 ⩵ 0,
{x, -1, 4}, {y, -2, 2}, {z, -2, 2}, Mesh → None 

Out[]=

The problem is that there is a line of intersection y = 0, z =
25

16
 } of these two surfaces. Even though

this line is not a factor of either component it is somehow counted twice in the contour plot of the

product, which is square free.

6 SSchapter1v2.nb

In[]:= sqFreeMD [ts2, {x, y, z}, dTol]

» Square Free

Out[]= -48. + 80. x - 25. x2 + 48. z - 80. x z + 25. x2 z - 16. z2 + 16. z3

Here is a picture .

In[]:= Show ContourPlot3D z - 1 ⩵ 0, 48 - 80 x + 25 x2 + 16 z2 ⩵ 0, {x, -1, 4}, {y, -2, 2}, {z, -2, 2},

Mesh → None , ParametricPlot3D [{1.5625, t, 1}, {t, -2, 2}, PlotStyle → Black],

ParametricPlot3D [{1.5625, 0, t}, {t, 1, 2}, PlotStyle → Green],

ParametricPlot3D [{1.5625, 0, t}, {t, -1, 1}, PlotStyle → Green],

ParametricPlot3D [{1.5625, 0, t}, {t, -2, -1}, PlotStyle → Red],

ParametricPlot3D [{3, 0, t}, {t, 1, 2}, PlotStyle → Green],

ParametricPlot3D [{3, 0, t}, {t, -2, 1}, PlotStyle → Red]

Out[]=

In some ways the original, wrong picture, did a better job of explaining the inside and outside of the

surface!

1.1.2 Regular and Smooth Surfaces

Before stating our main theorem in this section we make a definition. A point p in a surface f is regular

if the norm of the gradient is greater than zero. This is implemented, in the case of point p in ts2

SSchapter1v2.nb 7

In[]:= p = {25 / 16, 2, 1}

ts2 /. Thread [{x, y, z} → p]

grd = Grad [ts2, {x, y, z}] /. Thread [{x, y, z} → p]

Out[]= 
25

16
, 2, 1

Out[]= 0.

Out[]= {0., 0, 0.0351563 }

Here p, and ts2 are exact so the last component of the gradient is sufficiently large to be non-zero.

An important property of regular points is that we get a tangent plane and normal line .

In[]:= tangentPlaneNS [f_, p_, X_] := (Grad [f, X] /. Thread [{x, y, z} → p]).(X - p)

normalLineNS [f_, p_, X_] := lineMD [p, Append [(Grad [f, X] /. Thread [{x, y, z} → p]), 0], X]

In the example above

In[]:= tpp = tangentPlaneNS [ts2, {25 / 16, 2, 1}, {x, y, z}]

nlp = normalLineNS [ts2, {25 / 16, 2, 1}, {x, y, z}]

Out[]= 0. + 0.0351563 × (-1 + z)

Out[]= -0.100593 - 0.759004 x + 0.643268 y + 9.28877 × 10-17 z,

0.924931 - 0.309563 x - 0.22062 y - 1.97547 × 10-17 z

Of course this just says the tangent plane to the plane z = 1 at the regular point of ts2 is the plane z - 1 .

But this example exposes a problem because we want to consider the points where the cylinder meets

the plane tangently as singular. Fortunately we did give a good discussion of multiplicity in my Space

Curve Book section 2.3.3.1. In this example

In[]:= multiplicityMD [Prepend [nlp, ts2], {25 / 16, 2, 1}, {x, y, z}, 1*^-6]

Out[]= 2

Note that we can also get the multiplicity directly from NSolve .

In[]:= NSolveValues [Append [nlp, ts2], {x, y, z}, Reals]

Out[]= {{1.5625, 2., -0.998901 }, {1.5625, 2., 0.998901 }, {1.5625, 2., 1.}}

The last two zeros are numerically p so p is a double point.

So our normal line meets the surface in a double point, as can be easily seen from the plot above .

We thus define a surface to be smooth or non-singular at point p if both the gradient is non-zero and

the multiplicity of the intersection of the normal line and surface is 1. A point where either the gradient

is zero or the intersection of the normal line and surface has multiplicity 2 or greater with a loose

tolerance is called singular.

It should be mentioned that [Abhyankar, p.205] mentions that, in our notation, the set of non-regular

points must be algebraic, in our case a finite point set or a curve, as in ts2, but the set of singular points

8 SSchapter1v2.nb

need not be algebraic.

Our main theorem, slightly modified from a standard theorem of differential geometry is

Jordan - Brouwer Let f be a non-degenerate square free polynomial giving a smooth surface. Then the

surface f is two sided, moreover for p in the surface there is a neighborhood of p which is topologically an

open plane disk.

What this means is that the points of a smooth naive surface define an oriented manifold. To see a

definition and discussion this see a differential geometry text such as [Montiel, Ros].

We will only refer to smooth surfaces as having sides. As an example consider the surface x y z = 0

In[]:= ContourPlot3D [x y z ⩵ 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Mesh → None, MaxRecursion → 4]

Out[]=

These planes actually break up space into 8 regions rather than 2, so sides are not actually a useful

concept.

The Jordan - Brower theorem only refers to affine surfaces. The projective surface defined by f = 0,

more specifically the projective closure of the affine f = 0, need not be two sided, orientable. A crite -

rion for a smooth real projective surface to be two sided is that for every line which intersects this

surface only transversely, that is does lie in this surface , must intersect the surface in an even number,

counted by multiplicity, of projective points. In particular the plane z = 0 is one sided as a projective

surface. For more information see section 1.9.

1.2 Introduction to Rational Parametric Surfaces
A second way to define a surface is to use a rational parametric function. A simple one is

SSchapter1v2.nb 9

In[]:= F1 = {s, t, s^2 - t^2}

Out[]= s, t, s2 - t2

We can plot part of this surface using ParametricPlot3D.

In[]:= ParametricPlot3D [F1, {s, -10, 10}, {t, -10, 10}, PlotRange → 10, Mesh → None]

Out[]=

Unlike contour plots giving a plot range is optional, but in most cases a good idea to get a nice plot.

Once could also do this to control each variable separately with

In[]:= ParametricPlot3D [F1, {s, -10, 10}, {t, -10, 10},

PlotRange → {{-10, 10}, {-10, 10}, {-5, 10}}, Mesh → None]

Out[]=

As with contour plots I disable the Mesh because I will want to draw my own curves on this surface.

One can also use the option MaxRecursion with parametric plots if the plot is complicated.

10 SSchapter1v2.nb

More generally a rational parametric surface in ℝ 3 is given by a function

F =  f1 (s, t)

f4 (s, t)
,

f2 (s, t)

f4 (s, t)
,
f3 (s, t)

f4 (s, t)


where the fi are polynomial functions of the two variables s, t.

We generally like to have the common denominator f4 but it is not absolutely required as it can be

calculated, the important thing is that no denominator is the constant 0. We do not require the numera -

tors and the denominator to have the same degree, the degree of the numerators may be less than,

equal or greater than the degree of the numerator and different from each other. In the polynomial

case of F1 above the denominators are all the constant 1 of degree 0. When the parameters {s, t}

make f4(s, t) = 0 we say F is undefined or infinite, in Chapter 2, particularly, we will use the latter termi -

nology. This zero set of the denominator may be a discrete point set or a curve. When working with

rational parametric surfaces the default range of s, t is -∞ < s, t <∞ in this chapter, however specific

examples may have a smaller range.

Here is a non-trivial example of a rational parametric surface, the torus. Note in this case the definition

does not give a common denominator but it is easily seen that a common denominator would be

1 + s2 × 1 + t2.

In[]:= Ts = 
4 s 1 + t + t2

1 + s2 × 1 + t2
, -

2 × -1 + s2 - t + s2 t - t2 + s2 t2
1 + s2 × 1 + t2

,
1 - t2

1 + t2
;

In plotting a rational surface we can not, in general, show the entire surface so we pick a large bounded

range.

In[]:= ParametricPlot3D [Ts, {s, -10, 10}, {t, -10, 10}, PlotRange → All,

Mesh → None, MaxRecursion → 4, PlotStyle → Opacity [.8]]

Out[]=

We see this finite range gives a deformed rectangle curved in both dimensions. We can easily imagine

that if we used the full range -∞ < s, t <∞ we would get a torus. The opacity[.8] is to help visualize

that there is a strip missing on the bottom, the

MaxRecursion→ 4 helps to smooth out the plot.

SSchapter1v2.nb 11

At a given point of a rational parameterization {s0, t0} we can take the partial derivatives and evaluate

to get vectors. For example with the torus Ts and point p = {2, 3}

In[]:= p = {2, 3};

vs = D[Ts, s] /. Thread [{s, t} → p]

vt = D[Ts, t] /. Thread [{s, t} → p]

Tsp = Ts /. Thread [{s, t} → p]

Out[]= -
78

125
, -

104

125
, 0

Out[]= -
16

125
,

12

125
, -

3

25


Out[]= 
52

25
, -

39

25
, -

4

5


The normal vector is is the cross product vs×vt

In[]:= nv = Cross [vs, vt]

Out[]= 
312

3125
, -

234

3125
, -

104

625


and the tangent plane is nv.(X-F(p))

In[]:= tp = nv.({x, y, z} - Tsp)

Out[]=

312 × - 52

25
+ x

3125
-

234 ×  39
25

+ y
3125

-
104

625
×

4

5
+ z

or, better

In[]:= tp = Expand [N[tp]]

Out[]= -0.4576 + 0.09984 x - 0.07488 y - 0.1664 z

12 SSchapter1v2.nb

In[]:= Show [ContourPlot3D [tp ⩵ 0, {x, -4, 4}, {y, -4, 4}, {z, -4, 4},

Mesh → None, ContourStyle → Directive [Cyan, Opacity [.5]]],

ParametricPlot3D [Ts, {s, -10, 10}, {t, -10, 10}, PlotRange → All,

Mesh → None, MaxRecursion → 4, PlotStyle → Opacity [.8], PlotRange → All],

Graphics3D [{Black, Arrow [{Tsp, Tsp + 10 nv}]}]]

Out[]=

The general code is

In[]:= normalVectorRS [F_, st0_, st_] := Module [{pv, vs, vt},

vs = D[F, st〚1〛] /. Thread [st → st0];

vt = D[F, st〚2〛] /. Thread [st → st0];

Cross [vs, vt]]

tangentPlaneRS [F_, st0_, st_, X_] := Module [{nv, p},

p = F /. Thread [st → st0];

nv = normalVectorRS [F, st0, st];

N[Expand [nv.(X - p)]]]

For this example

In[]:= normalVectorRS [Ts, {2, 3}, {s, t}]

tangentPlaneRS [Ts, {2, 3}, {s, t}, {x, y, z}]

Out[]= 
312

3125
, -

234

3125
, -

104

625


Out[]= -0.4576 + 0.09984 x - 0.07488 y - 0.1664 z

As with naive surfaces a rationally parameterized surface F (s, t) is regular at {s0, t0} if there is a tangent

plane at F(s0, t0). But as with naive algebraic surfaces regularity at {s0,t0} does not imply smoothness

SSchapter1v2.nb 13

at F(s0,t0). But the situation is very different. For naive surfaces it is a local problem, for rationally

parameterized surfaces it is a global problem. Here are two examples.

In[]:= node3D = {t^2 - 1, t^3 - t, s}

Out[]= -1 + t2, -t + t3, s

In[]:= Show [ParametricPlot3D [node3D, {s, -3, 3}, {t, -1.5, 1.5}, Mesh → None],

Graphics3D [{Red, Thickness [.01], Line [{{0, 0, -3}, {0, 0, 3}}]}]]

Out[]=

Note the line x = y = 0 appears to be a singular locus of this surface. But points on this line are of the

form

In[]:= node3D /. Thread [{s, t} → {s, -1}]

node3D /. Thread [{s, t} → {s, 1}]

Out[]= {0, 0, s}

Out[]= {0, 0, s}

However

In[]:= normalVectorRS [node3D, {s, -1}, {s, t}]

normalVectorRS [node3D, {s, 1}, {s, t}]

Out[]= {-2, -2, 0}

Out[]= {-2, 2, 0}

are non - zero, so all of these points are regular in the the parameters. The problem is that different

parameter values give the same points. While harder to deal with the problem is no worse than with

ts2 so we have nothing to do.

A second example is similar but causes an additional problem.

14 SSchapter1v2.nb

In[]:= ribbon = {t^3 + 2, s^2 - 3 t^2, t^2 + t - 2 + 1}

Out[]= 2 + t3, s2 - 3 t2, -1 + t + t2

In[]:= ParametricPlot3D [ribbon, {s, -1, 1}, {t, -2, 2}, Mesh → None, PlotStyle → Opacity [.8]]

Out[]=

Here the plot does not show a self intersection. However

normalVectorRS [ribbon, {s, b}, {s, t}]

Out[]= 2 s + 4 b s, 0, -6 b2 s

so when s = 0 this is not regular. When s , t are both non-zero then it is regular but note that rib -

bon3D(s,t) = ribbon3D(-s,t) so each point on the surface is double, that is, comes from two different

parameter values so cannot be considered smooth.

This reminds one of Einstein’s “spooky action at a distance”. If we can only see a parameter space for

the universe rather than the actual universe then an atom seemingly far away perhaps behaves the

same as one nearby because in the universe it may actually be the same atom. A spooky alien transmis -

sion from a planet circling a distant star could just be Fox News.

This is not a pleasant thought. For the ribbon example we can fix this problem by insisting that s > 0 .

But this parametric surface has an edge, it does not go on infinitely in the negative s direction.

In the next section we will discover the real answer to this problem that we can not see the true nature

of a point of the parametric surface just working locally, mainly that rational parametric surfaces, even

the ribbon, are subsets of naive algebraic surfaces.

I leave you with a plot of a more complicated rational parametric example using only cubic functions. I

will not try to analyze this here.

In[]:= strange1 = -3 - 3 s2 - 3 s3 + 3 s t - s2 t + 2 t2 - 3 s t2 + 3 t3,

-2 - 3 s2 - s3 + 2 t - s2 t - t2 + s t2, s + 2 s2 + 3 s3 - 3 t - s t - 2 t2 - 3 s t2 + 3 t3;

SSchapter1v2.nb 15

In[]:= ParametricPlot3D [strange1 , {t, -5, 5}, {s, -5, 5},

PlotRange → {{-8, 8}, {-8, 1}, {-8, 5}}, Mesh → None, MaxRecursion → 4]

Out[]=

16 SSchapter1v2.nb

1.3 Implicit Equation Theorem for Rational Parametric

Surfaces
Here we give two proofs that every rational parametric surface is contained in a naive in a naive sur -

face. The first is more theoretical, the second somewhat more practical.

1.3.1 Theoretical Method

A proof in the curve case appeared in my Mathematica Journal article [Dayton, Degree vs Dimension of

Rational Parametric Curves]. Another discussion is in my Space Curve Book 3.1.4.

The proof for surface is slightly modified but the idea is the same: a rational parametric function can be

viewed as Fractional Linear Transformation (FLT) from an appropriate generic curve.

 We write our parametric surface in the standard form of §1.1 with a common denominator. Since we

now have two parameters if m is the largest degree of a monomial there are binomial coefficient

m + 2

2
 bivariate monomials of degree m or less. This number, the dimension of the space of generic

curves of degree m, can become uncomfortably large. It turns out that it enough to just use the mono -

mials actually used in the rational parametric function and monomials that divide these.

 The method is thus to take this set of n monomials, calling them X [1], X [2].…, X [n]. We take a set of

relations between these variables and find a HBasis for this using, because it is faster in this case, a

Groebner basis for this basis. We construct a (n+1)×4 matrix for our FLT matrix. Then an application of

FLTMD will give an equation set defining the smallest algebraic surface in ℝ3 containing the image

surface of our FLT. Any equation of this set will contain our parameterized surface so we can just pick

one. While this single equation, defining a naive surface, may not completely describe our surface

which may be smaller it will serve to give us a Jordan-Brouwer theorem and this surface can find locally

the local behaviour of this function at a smooth point.

We proceed with an example

In[]:= hyperboloid = 
t - s^2 t

1 - s^2
,
1 + s2 - 2 s t

1 - s2
,
2 s - t - s2 t

1 - s2
;

I collect the monomials used

In[]:= V = s, t, s t, s2, s2 t;

I now find a 8×4 matrix which produces this rational function via a transformation function, note the

first 7 columns can be indexed by the monomials in V and the last column is the constant. The first 3

rows are from the numerator, the last from the denominator.

SSchapter1v2.nb 17

In[]:= A = {{0, 1, 0, 0, -1, 0}, {0, 0, -2, 1, 0, 1}, {2, -1, 0, 0, -1, 0}, {0, 0, 0, -1, 0, 1}};

A // MatrixForm

Out[]//MatrixForm=

0 1 0 0 -1 0

0 0 -2 1 0 1

2 -1 0 0 -1 0

0 0 0 -1 0 1

To check

In[]:= TransformationFunction [A][V]

Out[]= 
t - s2 t

1 - s2
,
1 + s2 - 2 s t

1 - s2
,
2 s - t - s2 t

1 - s2


Next I treat the monomials as variables

In[]:= Clear [Y]

In[]:= AY = Table [Y[i] → V〚i〛, {i, 5}]

Out[]= Y[1] → s, Y[2] → t, Y[3] → s t, Y[4] → s2, Y[5] → s2 t

Note that the Y[i] have only one bracket, thus these are independent variables rather than members of

a list. However I don’t want these to be independent so I give a set of relations on these Y[i]s.

In[]:= sys = {Y[3] - Y[1] × Y[2], Y[4] - Y[1]^2, Y[5] - Y[2] × Y[4]};

To find a H - basis for this large exact system I use Groebner Bases.

In[]:= gBasis = GroebnerBasis [sys, Keys [AY], MonomialOrder → DegreeLexicographic]

Out[]= -Y[3]2 + Y[2] × Y[5], Y[2] × Y[4] - Y[5], -Y[3] × Y[4] + Y[1] × Y[5],

Y[1] × Y[3] - Y[5], Y[1] × Y[2] - Y[3], Y[1]2 - Y[4], Y[3]2 Y[4] - Y[5]2

Note

In[]:= Length [gBasis]

Out[]= 7

I now find my implicit equation by

In[]:= {time, eq} = Timing [FLTMD [gBasis, A, 4, Keys [AY], {x, y, z}, dTol]]

» Initial Hilbert Function {1, 4, 9, 16, 25 }

» Final Hilbert Function {1, 4, 9, 16, 25 }

Out[]= 2.68174, 1. - 1. x2 - 1. y2 + 1. z2

In[]:= qpEq = eq〚1〛
Out[]= 1. - 1. x2 - 1. y2 + 1. z2

So I get my equation in under 3 seconds.

Finally I check by comparing plots . The second one has the mesh.

18 SSchapter1v2.nb

In[]:= Show [ContourPlot3D [qpEq ⩵ 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh → None],

ParametricPlot3D [hyperboloid , {s, -20, 20}, {t, -3, 3}, PlotStyle → LightGray]]

Out[]=

1.3.2 Direct Method

Although I was able compute the example above in around 3 seconds of computer time this is an

eternity for Mathematica. With many more monomials this method is impractical. The following

method may work better, but we must first consider polynomial parameterizations.

The function here is based on the Space Curve Book function p2aRawMD which in turn was based on

the algorithm in Appendix 1.5 of the plane curve book. The reader who wants an explanation of how

this works should look there. This routine expects exact or very accurate numerical coefficients. Here F

is the polynomial parameterization, d is the maximal degree of a monomial in F , md is the maximum

degree you are allowing an implicit equation, T are the variable in F and X are the variables in ℝ3.

Actually this works for parameterized surfaces in ℝn for any n so X will be the variables there.

SSchapter1v2.nb 19

In[]:= par2affRS [F_, d_, md_, T_, X_] :=

Module [{n, TB, ar, cr, SA, AK, mon, ncr, nak, NSA, medNSA, FA, SAA},

n = Length [X];

If[Length [F] ≠ n, Echo ["Dimension mismatch F,X"]; Abort []];

TB = Expand [Table [mon /. Thread [X → F], {mon, mExpsMD [md, X]}]];

cr = CoefficientRules [#, T] & /@ TB;

ncr = Length [cr];

AK = exps [2, md * d];

nak = Length [AK];

SAA = Reap [For[i = 1, i ≤ ncr, i++, For[j = 1, j ≤ nak, j++,

If[KeyExistsQ [cr〚i〛, AK〚j〛], Sow[{i, j} → cr〚i〛[AK〚j〛]]]]]]〚2, 1〛;
SA = Transpose [SparseArray [SAA]];

NSA = NullSpace [SA];

If[Length [NSA] ⩵ 0, Return ["Fail, try higher md"],

Echo [Length [NSA], "Number of equations "]];

medNSA = Median [Abs[Flatten [NSA]]] + 1;

N[NSA / medNSA].mExpsMD [md, X]

]

We demonstrate this on our ribbon example from the previous section.

In[]:= {time, ribboneqs } = Timing [par2affRS [ribbon, 3, 3, {s, t}, {x, y, z}]]

» Number of equations 1

Out[]= 0.018665 , 5. - 1. x2 + 9. z - 3. x z + 3. z2 + 1. z3

In[]:= ribboneq = roundPolyMD [ribboneqs 〚1〛, {x, y, z}, 1]

Out[]= 5 - x2 + 9 z - 3 x z + 3 z2 + z3

20 SSchapter1v2.nb

In[]:= Show [ContourPlot3D [ribboneq ⩵ 0, {x, -5, 10},

{y, -12, 10}, {z, -5, 5}, Mesh → None, ContourStyle → Opacity [.5]],

ParametricPlot3D [ribbon, {s, .001, 6}, {t, -5, 5}, PlotStyle → LightGray]]

Out[]=

Again the parameterized image is given by the mesh. We note that there is a lower part of the plot of

the implicit surface that is not covered by the parameterized surface which had a domain of s > 0. But

even if we used parameter values of s < 0 we would not get more coverage. Thus the parameterization

ribbon only parameterizes part of the implicit surface.

Here is a discouraging example. We try to implicitize a polynomial parameterized surface with coordi -

nates of degree 3. We start with a random A:

In[]:= A = Append [RandomInteger [{-4, 4}, {3, 10}], {0, 0, 0, 0, 0, 0, 0, 0, 0, 1}]

Out[]= {{2, 3, -3, 1, -3, 3, -1, -2, 1, 0}, {1, -2, -4, -4, -3, -2, 2, 3, -4, 1},

{1, -4, -4, -2, 0, 1, -1, -4, 1, -3}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 1}}

In[]:= Dimensions [A]

Out[]= {4, 10}

In[]:= Y = Drop [mExpsMD [3, {s, t}], 1]

Out[]= s, t, s2, s t, t2, s3, s2 t, s t2, t3

SSchapter1v2.nb 21

In[]:= TransformationFunction [A][Y]

Out[]= 2 s - 3 s2 + 3 s3 + 3 t + s t - s2 t - 3 t2 - 2 s t2 + t3,

1 + s - 4 s2 - 2 s3 - 2 t - 4 s t + 2 s2 t - 3 t2 + 3 s t2 - 4 t3,

-3 + s - 4 s2 + s3 - 4 t - 2 s t - s2 t - 4 s t2 + t3

Eqns = par2affNS [F, 3, 3, {s, t}, {x, y, z}];

Out[]= Fail, try higher md

Eqns = par2affNS [F, 3, 5, {s, t}, {x, y, z}];

Out[]= Fail, try higher md

Eqns = par2affNS [F, 3, 8, {s, t}, {x, y, z}];

Out[]= Fail, try higher md

In[]:= Eqns = par2affNS [F, 3, 9, {s, t}, {x, y, z}];

» Number of equations 1

In[]:= Length [Eqns〚1〛]
Out[]= 148

Our smallest implicit equation is of degree 9 with 148 terms! In fact this will almost always be the case

but it shows that there is an implicit equation. Of course this gets much worse for higher degrees.

There is a trick we can use to handle a rational parameterization : see my Mathematica Journal article

[Degree vs Dimension of Rational Parametric Curves].

Take the original parameterization and strip all constants, also put the common denominator as a 4th

component. Check to make sure components are independent in space of 2 variable polynomials, if

not see my Mathematica Journal article for a reduction. Use pol2affNS to find an implicit polynomial

system with variables {x,y,z,w}. If this is more than 2 or 3 equations reduce by hBasisMD. Now create a

matrix by taking the first 4 rows of the 5×5 identity matrix. In the 5th column replace the constants that

you stripped. Then apply FLTMD to the implicit polynomial system using this 4×5 matrix. You should

get your implicit system of the rational parametric surface. We illustrate using the above

In[]:= hyperboloid = 
t - s2 t

1 - s2
,
1 + s2 - 2 s t

1 - s2
,
2 s - t - s2 t

1 - s2
;

Strip off the constants from each term in the numerator and denominator.

In[]:= strippedh = {t - s^2 t, s^2 - 2 s t, 2 s - t - s^2 t, -s^2};

Note we can recover hyperboloid from strippedh by an FLT: Let

22 SSchapter1v2.nb

In[]:= AH = {{1, 0, 0, 0, 0}, {0, 1, 0, 0, 1}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 1}};

AH // MatrixForm

Out[]//MatrixForm=

1 0 0 0 0

0 1 0 0 1

0 0 1 0 0

0 0 0 1 1

In[]:= TransformationFunction [AH][strippedh]

Out[]= 
t - s2 t

1 - s2
,
1 + s2 - 2 s t

1 - s2
,
2 s - t - s2 t

1 - s2


In[]:= raweq = pol2affNS [strippedh , 3, 3, {s, t}, {x, y, z, w}]

» Number of equations 8

Out[]= 0. + 2. w - 1. w3 - 1. x2 + 2. w x2 - 2. y + 1. w y2 - 2. w x z + 1. z2,

0. + 1. w x + 1. x3 + 1. x y + 1. w x y + 1. x y2 - 1. w z - 1. w2 z - 1. y z - 1. w y z - 1. x z2,

0. + 2. w - 1. x2 - 1. w x2 - 2. y + 2. w y - 2. y2 + 2. w x z + 1. z2 - 1. w z2, 0. - 1. w x - 1. x3 -

1. x y - 1. w x y - 1. x y2 - 1. w z + 1. x2 z + 3. y z + 1. w y z + 1. y2 z + 1. x z2 - 1. z3,

0. + 1. w - 2. x2 - 1. w x2 - 3. y - 2. w y - 1. w2 y - 2. y2 - 1. w y2 - 1. x z + 1. w x z + 1. z2,

0. - 1. w + 2. x2 + 1. w x2 + 3. y + 1. x2 y + 4. y2 + 1. w y2 + 1. y3 + 1. x z - 1. w x z - 1. z2 - 1. y z2,

0. - 2. w x - 1. w2 x + 1. x3 + 2. x y + 1. x y2 - 1. x z2, 0. - 2. w - 1. w2 + 1. x2 + 2. y + 1. y2 - 1. z2

We have lots of equations so we can reduce the system

In[]:= hbeq = hBasisMD [raweq, 3, {x, y, z, w}, 1.*^-10]

» Initial Hilbert Function {1, 4, 9, 13 }

» Final Hilbert Function {1, 4, 9, 13 }

Out[]= 2. w + 1. w2 - 1. x2 - 2. y - 1. y2 + 1. z2,

1. w - 2. x2 - 1. w x2 - 3. y - 1. x2 y - 4. y2 - 1. w y2 - 1. y3 - 1. x z + 1. w x z + 1. z2 + 1. y z2,

1. w x + 1. x3 + 1. x y + 1. w x y + 1. x y2 + 1. w z - 1. x2 z - 3. y z - 1. w y z - 1. y2 z - 1. x z2 + 1. z3,

-2. w + 1. x2 + 1. w x2 + 2. y - 2. w y + 2. y2 - 2. w x z - 1. z2 + 1. w z2

Now produce the transformation matrix AH adding back the 1 in the second and 4 component.

In[]:= eq = FLTMD [raweq, AH, 3, {x, y, z, w}, {x, y, z}, dTol]〚1〛
» Initial Hilbert Function {1, 4, 9, 16 }

» Final Hilbert Function {1, 4, 9, 16 }

Out[]= 1. - 1. x2 - 1. y2 + 1. z2

which is exactly what we got before!

The point of this section is not really about how to implicitize an actual example but just to emphasize

the theorem that theoretically every rational parametric surface is contained in a naive implicit surface.

Thus we can apply the Jordan-Brouwer Theorem of Section 1.1 about smooth points. But the plot at

the end of Section 1.2 shows there can be many non-smooth points!

SSchapter1v2.nb 23

1.4 The Torus Story
This example has served as motivation for this book. Here I have a simpler, but more ad-hoc, method

for implicitizing rational parametric functions. The theme of studying surfaces by curves on the sur -

face will be a major technique in this book and has been a major tool also in classical algebraic geome -

try. Some of the surfaces mentioned in Section 1.1 are constructed here.

1.4.1 Preliminaries

 Before getting into this I remind the reader that the first method in the previous section 1.3 is based on

the method in section 3.1.4 of my Space Curves Book for finding implicit equations of rationally parame -

terized space curves. For degrees d = 2,3,4 and 5 one writes the curve in the form

TransformationFunction [A]td, td-1, …, t
or the equivalent

fltMDtd, td-1, …, t, A
for an appropriate (d + 1)⨯ (n + 1) transformation matrix A. Here n = 3. Essentially we are viewing the

parametric curve as an image of the rational normal curve of degree d. Then the implicit equation is

given by

FLTMD[tBasisd, A, m, {x1, x2, … xd}, {x, y, z}, tol]

for appropriate m. O�en m = d but a possibly smaller m might work or a larger m may be needed.

Naive space curves have 2 equations, rather than the one for surfaces, but o�en the correct system of

equations for a rational parametric curve will not be naive and require more than 2 equations but for

our use we may find 2 equations that serve our purposes.

One other important preliminary idea from Space Curves is that we can approximate ideals of algebraic

spaces using Sylvester matrices. The rows of a Sylvester, or other, matrix can be viewed as the basis of

a subspace of an appropriate n-space ℝn where o�en n is large. To take the union of two algebraic

spaces a row equivalent matrix to the Sylvester matrix of a union is the intersection of the Sylvester

matrices of the parts. So one of the main tools I will use in this book is the following simple algorithm

for the intersection of two vector subspaces of ℝn.

Note that in the Space Curve Book we adopt some of the language of Macaulay.

Matrices A, B are called (Macaulay) duals if

1. A B is defined and A B = 0

2. If v B = 0 then v is in the row space of A

3. If v B = 0 then v is in the row space of A

That is, A, B are maximal satisfying A B = 0. It is sufficient that the columns of B form the nullspace of A

or the rows of A form the column space of B. In my so�ware if either A = localDualMatrix[B,tol]

or B = dualMatrix[A, tol] then A,B are duals, in particular B is the dual of A and A is the local dual

24 SSchapter1v2.nb

of B.

Here let V , W be matrices with the same number of columns whose row spaces are the two vector

spaces Let dV, dW be the duals of V , W and dd the column join of dV, dW .

If v is in the intersection of the vector spaces then v.dV = v.dW = 0 so v.dd=0 and v is in the row space of

the local dual of dd.

Conversely, if v is in the row space of the local dual of dd then v. dd = 0 meaning v.c = 0 for any column

of dd. In particular v.dV = 0, v.dW =0 so v is in the row space of V and the row space of W, hence in the

intersection.

Thus our algorithm is

In[]:= vectorSpaceIntersection [V_, W_, tol_] := Module [{dV, dW, dd},

dV = dualMatrix [V, tol];

dW = dualMatrix [W, tol];

dd = Join [dV, dW, 2];

localDualMatrix [dd, tol]]

 This can be extended to 3 or more subspaces if useful , see GlobalFunctionsS.nb

To use this to find the union of two algebraic sets we take Sylvester matrices of the same appropriate

order for the two sets. We then intersect the underlying row spaces to get a row matrix which we

multiply by an mExpsMD list of monomials to convert back to equations. If necessary we find a smaller

hBasis of this list. Examples are below.

1.4 .2 The Torus

Here is our rationally parametrized surface .

In[]:= T = 
4 s 1 + t + t2

1 + s2 × 1 + t2
, -

2 × -1 + s2 - t + s2 t - t2 + s2 t2
1 + s2 × 1 + t2

,
1 - t2 × (1 + s^2)

1 + t2 × (1 + s^2)
;

Plotting, using a finite range instead of the {-∞,∞} theoretical range, we get

SSchapter1v2.nb 25

In[]:= PT := ParametricPlot3D [T, {t, -10, 10}, {s, -10, 10},

PlotRange → All, Mesh → None, MaxRecursion → 4, PlotStyle → Opacity [.8]]

PT

Out[]=

This seems to be most of a torus.

Step 1

We can find curves on this surface by restricting to one variable by making the other a constant, in this

case we will set t to 0 and then, for later consistency, set s to t.

In[]:= ft0 = T /. {t → 0, s → t}

Out[]= 
4 t

1 + t2
, -

2 × -1 + t2
1 + t2

, 1

Since 1 =
1+t^2

1+t^2
 we can use the transformation matrix

In[]:= At0 = {{0, 4, 0}, {2, 0, -2}, {1, 0, 1}, {1, 0, 1}}

Out[]= {{0, 4, 0}, {2, 0, -2}, {1, 0, 1}, {1, 0, 1}}

Checking

In[]:= fltMD [{t^2, t}, At0]

Out[]= 
4 t

1 + t2
,

-2 + 2 t2

1 + t2
, 1

26 SSchapter1v2.nb

In[]:= Show [PT, ParametricPlot3D [ft0, {t, -20, 20}]]

Out[]=

We find a basis by

In[]:= ideal1 = FLTMD [tBasis2, At0, 2, {x2, x1}, {x, y, z}, dTol]

Out[]= FLTMD [tBasis2, {{0, 4, 0}, {2, 0, -2}, {1, 0, 1}, {1, 0, 1}}, 2, {x2, x1}, {x, y, z}, dTol]

Using the second, more complicated basis element we see this curve generates the surface

SSchapter1v2.nb 27

In[]:= Show [ContourPlot3D [ideal1 〚-1〛 ⩵ 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Mesh → None],

ParametricPlot3D [ft0, {t, -20, 20}, MaxRecursion → 4]]

Out[]=

Step 2

We then consider a curve on the torus by making s a constant, we already have variable t. Again, we

are working ad-hoc so perhaps a bit of trial and error is necessary.

In[]:= fs2 = T /. {s → 2}

Out[]= 
8 × 1 + t + t2
5 × 1 + t2

, -
2 × 3 + 3 t + 3 t2

5 × 1 + t2
,
1 - t2

1 + t2


A transformation matrix is

In[]:= As2 = {{8, 8, 8}, {-6, -6, -6}, {-5, 0, 5}, {5, 0, 5}};

Checking

In[]:= fltMD [{t^2, t}, As2]

Out[]= 
8 + 8 t + 8 t2

5 + 5 t2
,

-6 - 6 t - 6 t2

5 + 5 t2
,
5 - 5 t2

5 + 5 t2


28 SSchapter1v2.nb

In[]:= Show [PT, ParametricPlot3D [{fs2, ft0}, {t, -20, 20}, PlotStyle → Blue, MaxRecursion → 4]]

Out[]=

These curves are on the torus as the plot shows, but we want to see what sort of surface is determined

by these curves alone. We now use ideas of 1.4.1.

In[]:= ideal2 = FLTMD [tBasis2, As2, 2, {x2, x1}, {x, y, z}, dTol]

Out[]= FLTMD [tBasis2, {{8, 8, 8}, {-6, -6, -6}, {-5, 0, 5}, {5, 0, 5}}, 2, {x2, x1}, {x, y, z}, dTol]

We use m = 4 because we think the torus will have an equation of degree 4.

In[]:= syl1 = sylvesterMD [ideal1, 4, {x, y, z}];

syl2 = sylvesterMD [ideal2, 4, {x, y, z}];

In[]:= intersec2 = vectorSpaceIntersection [syl1, syl2, 1.*^-10];

Length [intersec2]

Out[]= 18

This says we will get a basis of 18 polynomials, which is too cumbersome. So we do

In[]:= basis2 = hBasisMD [intersec2 .mExpsMD [4, {x, y, z}], 4, {x, y, z}, 1.*^-10]

Out[]= hBasisMD intersec2 .mExpsMD [4, {x, y, z}], 4, {x, y, z}, 1. × 10-10 

to get a basis of 4 polynomials . Plotting the last one w2 have

SSchapter1v2.nb 29

In[]:= Show [ContourPlot3D [basis2 〚-1〛 ⩵ 0, {x, -2, 3}, {y, -2, 2}, {z, -2, 2}, Mesh → None],

ParametricPlot3D [{fs2, ft0}, {t, -20, 20}, PlotStyle → Blue, MaxRecursion → 4]]

Out[]=

This is just the surface ts2 of section 1.1. We saw that this is the union of a plane with an infinite cylin -

der and the intersection line was regular but not smooth so ContourPlot3D can not plot this correctly,

but the upper circle is in ts2.

Step 3

We now add another vertical circle .

In[]:= ftp5 = Expand [T /. {t → .5, s → t}]

Out[]= 
5.6 t

1 + t2
,

2.8

1 + t2
-
2.8 t2

1 + t2
, 0.6

Putting the last component over the common denominator gives transformation matrix

In[]:= Atp5 = {{0, 5.6, 0}, {-2.8, 0, 2.8}, {.6, 0, .6}, {1, 0, 1}};

In[]:= fltMD [{t^2, t}, Atp5]

Out[]= 
5.6 t

1. + 1. t2
,
2.8 - 2.8 t2

1. + 1. t2
,
0.6 + 0.6 t2

1. + 1. t2


30 SSchapter1v2.nb

In[]:= Show [PT,

ParametricPlot3D [{ftp5, fs2, ft0}, {t, -20, 20}, PlotStyle → Blue, MaxRecursion → 4]]

Out[]=

In[]:= ideal3 = FLTMD [tBasis2, Atp5, 2, {x2, x1}, {x, y, z}, dTol]

» Initial Hilbert Function {1, 3, 5}

» Final Hilbert Function {1, 3, 5}

Out[]= 1. - 1.66667 z, -0.0459184 x2 - 0.0459184 y2 + 1. z2

In[]:= syl3 = sylvesterMD [ideal3, 4, {x, y, z}];

syl3b = sylvesterMD [basis2, 4, {x, y, z}];

intersect3 = vectorSpaceIntersection [syl3, syl3b, 1.*^-10];

Length [intersect3]

Out[]= 12

In[]:= basis3 = hBasisMD [intersect3 .mExpsMD [4, {x, y, z}], 4, {x, y, z}, 1.*^-10]

» Initial Hilbert Function {1, 3, 6, 7, 6}

» Final Hilbert Function {1, 3, 6, 7, 6}

Out[]= -10.2 x + 0.75 x3 - 13.6 y + 1. x2 y + 0.75 x y2 + 1. y3 + 7.2 x z + 9.6 y z,

0.45 x + 0.6 y - 1.2 x z - 1.6 y z + 0.75 x z2 + 1. y z2,

-6. + 8.125 x - 0.625 x3 - 0.625 x y2 + 3. z - 5. x z + 1. x2 z + 1. y2 z - 2. z2 - 0.625 x z2 + 1. z3,

10.752 - 6.4 x - 11.464 x2 + 0.64 x3 + 1. x4 + 1.536 y2 + 0.64 x y2 +

1. x2 y2 + 2.88 x2 z - 5.12 y2 z + 3.584 z2 + 3.84 x z2 + 1. x2 z2

SSchapter1v2.nb 31

In[]:= Show [ContourPlot3D [basis3 〚-1〛 ⩵ 0, {x, -4, 3}, {y, -4, 4}, {z, -2, 2}, Mesh → None],

ParametricPlot3D [{ftp5, fs2, ft0}, {t, -20, 20}, PlotStyle → Blue, MaxRecursion → 4]]

Out[]=

Step 4.

We find another vertical circle

In[]:= fs4 = T /. {s → 4}

Out[]= 
16 × 1 + t + t2
17 × 1 + t2

, -
2 × 15 + 15 t + 15 t2

17 × 1 + t2
,
1 - t2

1 + t2


In[]:= As4 = {{16, 16, 16}, {-30, -30, -30}, {-17, 0, 17}, {17, 0, 17}};

Checking :

In[]:= fltMD [{t^2, t}, As4]

Out[]= 
16 + 16 t + 16 t2

17 + 17 t2
,

-30 - 30 t - 30 t2

17 + 17 t2
,
17 - 17 t2

17 + 17 t2


32 SSchapter1v2.nb

In[]:= Show [PT, ParametricPlot3D [{ftp5, fs2, ft0}, {t, -20, 20}, PlotStyle → Blue],

ParametricPlot3D [fs4, {t, -20, 20}, PlotStyle → Green]]

Out[]=

Continuing as above

In[]:= ideal4 = FLTMD [tBasis2, As4, 2, {x2, x1}, {x, y, z}, dTol]

» Initial Hilbert Function {1, 3, 5}

» Final Hilbert Function {1, 3, 5}

Out[]= 1.875 x + 1. y, 1. - 2.83333 x + 1.50521 x2 + 0.333333 z2

In[]:= syl4 = sylvesterMD [ideal4, 4, {x, y, z}];

syl4b = sylvesterMD [basis3, 4, {x, y, z}];

intersect4 = vectorSpaceIntersection [syl4, syl4b, 1.*^-10];

Length [intersect4]

Out[]= 7

In[]:= basis4 = hBasisMD [intersect4 .mExpsMD [4, {x, y, z}], 4, {x, y, z}, 1.*^-10]

» Initial Hilbert Function {1, 3, 6, 9, 9}

» Final Hilbert Function {1, 3, 6, 9, 9}

Out[]= -6. + 4.33333 x - 0.333333 x3 - 5.05556 y + 0.388889 x2 y - 0.333333 x y2 + 0.388889 y3 + 3. z -

2.66667 x z + 1. x2 z + 3.11111 y z + 1. y2 z - 2. z2 - 0.333333 x z2 + 0.388889 y z2 + 1. z3,

-6.4 + 2.03175 x - 2.92619 x2 - 0.203175 x3 + 0.154762 x4 - 2.37037 y - 13. x y + 0.237037 x2 y +

1. x3 y - 0.914286 y2 - 0.203175 x y2 + 0.154762 x2 y2 + 0.237037 y3 + 1. x y3 + 4.28571 x2 z +

8. x y z + 3.04762 y2 z - 2.13333 z2 - 1.21905 x z2 + 0.154762 x2 z2 + 1.42222 y z2 + 1. x y z2,

-19.125 x2 + 1.40625 x4 - 35.7 x y + 2.625 x3 y - 13.6 y2 + 2.40625 x2 y2 +

2.625 x y3 + 1. y4 + 13.5 x2 z + 25.2 x y z + 9.6 y2 z,

16.8 - 5.33333 x + 8.525 x2 + 0.533333 x3 - 0.40625 x4 + 6.22222 y + 35.7 x y -

0.622222 x2 y - 2.625 x3 y + 3. y2 + 0.533333 x y2 - 0.40625 x2 y2 - 0.622222 y3 - 2.625 x y3 -

13.5 x2 z - 25.2 x y z - 9.6 y2 z + 5.6 z2 + 3.2 x z2 + 1. x2 z2 - 3.73333 y z2 + 1. y2 z2

SSchapter1v2.nb 33

In[]:= Length [basis4]

Out[]= 4

As before the last equation gives an example of a surface of degree 4 containing these 4 curves .

In[]:= Show [ContourPlot3D [basis4 〚-1〛 ⩵ 0, {x, -3, 4}, {y, -3, 3}, {z, -3, 3}, Mesh → None],

ParametricPlot3D [{fs4, ftp5, fs2, ft0}, {t, -20, 20}, PlotStyle → Blue]]

Out[]=

Step 5.

Now we add another vertical circle .

In[]:= fsp5 = T /. {s → .5}

Out[]= 
1.6 × 1 + t + t2

1 + t2
, -

1.6 × -0.75 - 0.75 t - 0.75 t2
1 + t2

,
1 - t2

1 + t2


34 SSchapter1v2.nb

In[]:= Show [PT, ParametricPlot3D [{fs4, ftp5, fs2, ft0}, {t, -20, 20}, PlotStyle → Blue],

ParametricPlot3D [fsp5, {t, -20, 20}, PlotStyle → Green]]

Out[]=

In[]:= Asp5 = {{1.6, 1.6, 1.6}, {1.2, 1.2, 1.2}, {-1, 0, 1}, {1, 0, 1}};

Checking

In[]:= fltMD [{t^2, t}, Asp5]

Out[]= 
1.6 + 1.6 t + 1.6 t2

1. + 1. t2
,
1.2 + 1.2 t + 1.2 t2

1. + 1. t2
,
1. - 1. t2

1. + 1. t2


In[]:= ideal5 = FLTMD [tBasis2, Asp5, 2, {x2, x1}, {x, y, z}, dTol]

» Initial Hilbert Function {1, 3, 5}

» Final Hilbert Function {1, 3, 5}

Out[]= -0.75 x + 1. y, 1. - 1.66667 x + 0.520833 x2 + 0.333333 z2

In[]:= syl5 = sylvesterMD [ideal5, 4, {x, y, z}];

syl5b = sylvesterMD [basis4, 4, {x, y, z}];

intersect5 = vectorSpaceIntersection [syl5, syl5b, 1.*^-10];

Length [intersect5]

Out[]= 3

In[]:= basis5 = hBasisMD [intersect5 .mExpsMD [4, {x, y, z}], 4, {x, y, z}, 1.*^-10]

SSchapter1v2.nb 35

» Initial Hilbert Function {1, 3, 6, 10, 12 }

» Final Hilbert Function {1, 3, 6, 10, 12 }

Out[]= 40.5 x - 47.5313 x2 + 3.65625 x4 - 13. y2 + 4.65625 x2 y2 + 1. y4 - 20.25 x z + 29.25 x2 z -

6.75 x3 z + 8. y2 z - 6.75 x y2 z + 13.5 x z2 + 3.65625 x2 z2 + 1. y2 z2 - 6.75 x z3,

-11.25 x + 15.2344 x2 - 1.17188 x4 - 6. y + 8.125 x y - 0.625 x3 y - 1.17188 x2 y2 -

0.625 x y3 + 5.625 x z - 9.375 x2 z + 1.875 x3 z + 3. y z - 5. x y z + 1. x2 y z + 1.875 x y2 z +

1. y3 z - 3.75 x z2 - 1.17188 x2 z2 - 2. y z2 - 0.625 x y z2 + 1.875 x z3 + 1. y z3,

9. - 81. x + 85.0625 x2 - 6.3125 x4 + 16. y2 - 7.3125 x2 y2 - 1. y4 + 40.5 x z - 58.5 x2 z +

13.5 x3 z - 16. y2 z + 13.5 x y2 z + 6. z2 - 27. x z2 - 5.3125 x2 z2 + 13.5 x z3 + 1. z4

In[]:= Show [ContourPlot3D [basis5 〚-1〛 ⩵ 0, {x, -3, 4}, {y, -3, 3}, {z, -3, 3}, Mesh → None],

ParametricPlot3D [{fsp5, fs4, ftp5, fs2, ft0}, {t, -20, 20}, PlotStyle → Blue]]

Out[]=

We will name this surface ts5 for later use .

Step 6.

One more horizontal circle .

In[]:= ft2 = Expand [N[T /. {t → 2, s → t}]]

Out[]= 
5.6 t

1. + t2
,

2.8

1. + t2
-
2.8 t2

1. + t2
, -0.6

36 SSchapter1v2.nb

In[]:= Show [PT, ParametricPlot3D [{fsp5, fs4, ftp5, fs2, ft0}, {t, -20, 20}, PlotStyle → Blue],

ParametricPlot3D [ft2, {t, -20, 20}, PlotStyle → Green]]

Out[]=

At2 = {{0, 5.6, 0}, {-2.8, 0, 2.8}, {-.6, 0, -.6}, {1, 0, 1}};

fltMD [{t^2, t}, At2]

Out[]= 
5.6 t

1. + 1. t2
,
2.8 - 2.8 t2

1. + 1. t2
,

-0.6 - 0.6 t2

1. + 1. t2


In[]:= ideal6 = FLTMD [tBasis2, At2, 2, {x2, x1}, {x, y, z}, dTol]

» Initial Hilbert Function {1, 3, 5}

» Final Hilbert Function {1, 3, 5}

Out[]= 1. + 1.66667 z, -0.0459184 x2 - 0.0459184 y2 + 1. z2

In[]:= syl6 = sylvesterMD [ideal6, 4, {x, y, z}];

syl6b = sylvesterMD [basis5, 4, {x, y, z}];

intersect6 = vectorSpaceIntersection [syl6, syl6b, dTol];

Length [intersect6]

Out[]= 1

Since the length is 1 we do not need an hBasis calculation

In[]:= Teq = Chop [intersect6 .mExpsMD [4, {x, y, z}], dTol]〚1〛
Out[]= 0.493939 - 0.548821 x2 + 0.0548821 x4 - 0.548821 y2 + 0.109764 x2 y2 +

0.0548821 y4 + 0.329293 z2 + 0.109764 x2 z2 + 0.109764 y2 z2 + 0.0548821 z4

We check that this is a surface containing our original parameterization

In[]:= Chop [Simplify [Teq /. Thread [{x, y, z} → T]], 1.*^-10]

Out[]= 0

Simplifying a little more

In[]:= Teq = Expand 9 Teq  Teq〚1〛
Out[]= 9. - 10. x2 + 1. x4 - 10. y2 + 2. x2 y2 + 1. y4 + 6. z2 + 2. x2 z2 + 2. y2 z2 + 1. z4

SSchapter1v2.nb 37

In[]:= Teq = FromCoefficientRules [Normal [Round [CoefficientRules [Teq, {x, y, z}]]], {x, y, z}]

Out[]= 9 - 10 x2 + x4 - 10 y2 + 2 x2 y2 + y4 + 6 z2 + 2 x2 z2 + 2 y2 z2 + z4

we actually get an integer coefficient surface.

In[]:= Simplify [Teq /. Thread [{x, y, z} → T]]

Out[]= 0

In[]:= Show [ContourPlot3D [Teq ⩵ 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3},

Mesh → None, ContourStyle → Opacity [.8]], ParametricPlot3D [

{ft2, fsp5, fs4, ftp5, fs2, ft0}, {t, -20, 20}, PlotStyle → Blue, MaxRecursion → 6]]

Out[]=

Thus we have implicitized our torus! In other words the torus Teq is the only surface of degree 4 contain -

ing these 6 curves.

38 SSchapter1v2.nb

1.5 Curves in surfaces
Our calculation shows that one can find out a lot about a curve by studying curves in the surface . This

is a classical idea where these curves are called divisors. However rarely did one see an actual example.

In our own, explicit, way we will find these curves a major technique for studying surfaces.

1.5.1 Curves in rational parametric surfaces.

We study these first since since they are somewhat easier. Since our parameter space is just a plane

every plane curve li�s to a curve in the parameterized surface. If our parameterization is not one-to-

one the curve may be collapsed, or if the parameterization has non-regular points new singularities

may be added, so the curve may not look exactly like it looked in the plane. The method is easy, how -

ever there are two cases.

We will use the torus in the previous section as we now know both a parametric and implicit equation.

In[]:= Tor = 
4 s 1 + t + t2

1 + s2 × 1 + t2
, -

2 × -1 + s2 - t + s2 t - t2 + s2 t2
1 + s2 × 1 + t2

,
1 - t2

1 + t2
;

TorEq = 9 - 10 x2 + x4 - 10 y2 + 2 x2 y2 + y4 + 6 z2 + 2 x2 z2 + 2 y2 z2 + z4;

We can just substitute our plane parameterization for the parameters. Here is an example from my

Plane Curve Book section 7.3. We change the parameter to u so it won't conflict with s, t.

In[]:= F1 = {3 u - u^2 + 1, -2 u + u^2 - 2} / (1 + u + u^2)

Out[]= 
1 + 3 u - u2

1 + u + u2
,

-2 - 2 u + u2

1 + u + u2


This is an ellipse .

In[]:= A1 = {{-1, 3, 1}, {1, -2, -2}, {1, 1, 1}};

F1eq = FLTMD [tBasis2, A1, 2, {x2, x1}, {x, y}, dTol]〚1〛
» Initial Hilbert Function {1, 3, 5}

» Final Hilbert Function {1, 3, 5}

Out[]= 1. - 6. x - 3. x2 - 6. y - 6. x y - 4. y2

Note the error in the Plane Curve book!

SSchapter1v2.nb 39

In[]:= Show [ContourPlot [F1eq ⩵ 0, {x, -4, 2},

{y, -2, 2}, ContourStyle → Directive [Thick, Orange]],

ParametricPlot [F1, {u, -20, 20}, PlotStyle → Dashed]]

Out[]=

-4 -3 -2 -1 0 1 2

-2

-1

0

1

2

We then get a space curve

In[]:= TF1 = Simplify [Tor /. {s → F1〚1〛, t → F1〚2〛}]

Out[]= -
6 × -1 - 3 u + u2 × 1 + u + u2 × 1 + 2 u - u3 + u4

1 + 4 u + 5 u2 - 2 u3 + u4 × 5 + 10 u + 3 u2 - 2 u3 + 2 u4
,

12 u -1 - 3 u + 5 u3 - 3 u5 + 2 u6
1 + 4 u + 5 u2 - 2 u3 + u4 × 5 + 10 u + 3 u2 - 2 u3 + 2 u4

,
3 × -1 - 2 u + u2 + 2 u3

5 + 10 u + 3 u2 - 2 u3 + 2 u4


This is somewhat complicated and we end up with a curve of degree 8, the product of the degrees. This

is why no-one attempts this by hand. Two views are given.

Show [ContourPlot3D [TorEq ⩵ 0, {x, -3, 3}, {y, -3, 3}, {z, -2, 2}, Mesh → None],

ParametricPlot3D [TF1, {u, -20, 20}, PlotStyle → Blue]]

In[]:=  , 

1.5.2 Curves in Implicit Surface

Curves in implicit surfaces can easily be defined by intersecting with another implicit surface. In this

case we get a naive space curve as defined in my Space Curve Book. Possibly this curve is empty. In

other cases we have to use the techniques of that book to describe the curve. Typically the degree of

this curve will be the product of the two degrees so can be large. As in the Torus example of Section 1.4

we o�en use a plane as our second surface to preserve the degree. For example, when our surface is

40 SSchapter1v2.nb

quadratic using a second quadratic surface we already have a hard problem to describe the curve, this

is the Quadratic Surface Intersection problem of Section 3.2 of the Space Curve Book.

Now we introduce the important Fermat surface

In[]:= fermat = x^3 + y^3 + z^3 + 1;

We will make a curve on fermat by intersecting with the sphere

In[]:= sph = (x + 1)^2 + y^2 + z^2 - 1;

In[]:= Show [ContourPlot3D [{fermat ⩵ 0}, {x, -2, 1}, {y, -2, 2}, {z, -2, 2}, Mesh → None],

ContourPlot3D [sph ⩵ 0, {x, -2, 2}, {y, -2, 2}, {z, -1, 2},

Mesh → None, ContourStyle → Directive [Opacity [.6], Pink]]]

Out[]=

To plot we need to find some points on the intersection curve

In[]:= cp = criticalPoints3D [{fermat, sph}, {x, y, z}]

Out[]= {{-1.24155, 0., 0.970389 }, {-0.606468 , -0.919311 , 0.}, {-1.20364, 0.458357 , 0.865123 },

{-0.713712 , -0.75704, -0.587307 }, {-1.24155, 0.970389 , 0.}, {-0.606468 , 0., -0.919311 }}

We can now find points on the curve by

In[]:= P1 = pathFinder3D [{fermat, sph}, cp〚1〛, cp〚6〛, .2, {x, y, z}]

Out[]= {{-1.24155, 0., 0.970389 },

{-1.23247, 0.195949 , 0.952659 }, {-1.21237, 0.384334 , 0.898436 },

{-1.19336, 0.557564 , 0.8073 }, {-1.18662, 0.707692 , 0.681428 },

{-1.19629, 0.827291 , 0.526364 }, {-1.21646, 0.911499 , 0.349736 },

{-1.23537, 0.958754 , 0.159351 }, {-1.24116, 0.969773 , -0.0371887 },

{-1.22443, 0.946568 , -0.231607 }, {-1.17909, 0.892284 , -0.414435 },

{-1.10329, 0.811157 , -0.575635 }, {-1.00059, 0.707695 , -0.706518 },

{-0.880796 , 0.584756 , -0.802403 }, {-0.760452 , 0.441632 , -0.864626 },

{-0.663004 , 0.275756 , -0.900218 }, {-0.606468 , 0., -0.919311 }}

SSchapter1v2.nb 41

In[]:= P2 = pathFinder3D [{fermat, sph}, cp〚1〛, cp〚6〛, .2, {x, y, z}, dir → -1]

Out[]= {{-1.24155, 0., 0.970389 },

{-1.22964, -0.195509 , 0.953437 }, {-1.18999, -0.381293 , 0.904722 },

{-1.11984, -0.547315 , 0.828302 }, {-1.02166, -0.684434 , 0.728753 },

{-0.90404, -0.787017 , 0.609422 }, {-0.782202 , -0.855196 , 0.470323 },

{-0.67842, -0.895117 , 0.30879 }, {-0.617386 , -0.915248 , 0.126204 },

{-0.609214 , -0.917986 , -0.067741 }, {-0.640588 , -0.896043 , -0.260633 },

{-0.685277 , -0.839144 , -0.443606 }, {-0.716363 , -0.741066 , -0.608581 },

{-0.715878 , -0.604332 , -0.744351 }, {-0.684168 , -0.438983 , -0.841157 },

{-0.639503 , -0.255812 , -0.896996 }, {-0.606468 , 0., -0.919311 }}

In[]:= Show [ContourPlot3D [fermat ⩵ 0, {x, -2, 1}, {y, -2, 2}, {z, -2, 2}, Mesh → None],

Graphics3D [{{Blue, Thick, Line [P1]}, {Blue, Thick, Line [P2]}}]]

Out[]=

1.5.3 Implicit Surface and Parametric Curve

A third possibility is to use a parametric curve with the implicit surface. However this requires some

cleverness as there is no general method for doing this. For example one may observe that the that the

Fermat surface above contains the parametric lines {t, -t, -1}, {t, -1, t} and {-1, t, -t} in this surface.

We will see later there are no other real lines in this surface.

In[]:= fermat /. Thread [{x, y, z} → {t, -t, -1}]

Out[]= 0

42 SSchapter1v2.nb

In[]:= Show [ContourPlot3D [fermat ⩵ 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Mesh → None],

ParametricPlot3D [{{t, -t, -1}, {t, -1, -t}, {-1, t, -t}}, {t, -2, 2}, PlotStyle → Blue]]

Out[]=

1.5.4 Some Code

For the reader's convenience we give the code for the two routines we used in 1.5.2, the are, of course

in GlobalFunctionsS.nb. But some readers of the Space Curve book may notice that pathFinder3D has

changed, new options are allowed, in particular the option dir→-1 which allowed us to change

directions.

In[]:= criticalPoints3D [{f_, g_}, {x_, y_, z_}] := Module [{J, ob},

ob = RandomReal [{.7, 1.3}, 3].{x^2, y^2, z^2};

J = D[{f, g, ob}, {{x, y, z}}];

{x, y, z} /. NSolve [{f, g, N[Det[J]]}, {x, y, z}, Reals]]

SSchapter1v2.nb 43

In[]:= Options [pathFinder3D] = {maxit → 30, tol → 1.*^-8, dir → 1};

pathFinder3D [{f_, g_}, p_, q_, s_, {x_, y_, z_}, OptionsPattern []] :=

Module [{k, p0, p1, tv1, tv, L},

p0 = p;

L = Reap [Sow[p];

k = 0;

While [Norm [q - p0] > 2 s && k < OptionValue [maxit],

tv1 = OptionValue [dir] *

tangentVector3D [{f, g}, p0, {x, y, z}, tol → OptionValue [tol]];

If[tv1.(q - p0) > 0, tv = tv1, tv = -tv1];

p0 = closestPoint3D [{f, g}, p0 + s * tv, {x, y, z}];

Sow[p0];

k++];

If[k ≥ OptionValue [maxit], Print ["Warning, iteration limit reached"]];

Sow[q]];

L〚2, 1〛];

1.5.5 Ovals and Pseudo-Lines

In both my Plane Curve Book and Space Curve Book I discuss my Fundamental Theorem as well as

ovals and pseudo-lines which make most sense for non-singular curves. The Euler graph of a curve

may not be connected, in the graph theory sense. A connected component of the graph then refers to a

closed topological subcurve of the curve which may or may not be an entire algebraic curve. This

subcurve will be an oval if it meets the infinite plane in an even number of points, a pseudo-line if it

meets the infinite plane in an odd number of points counting multiplicity in both cases. Actually any

fixed plane of projective space can be used instead of the infinite plane, so any closed subcurve which

misses some plane entirely is an oval, in particular bounded closed curves are ovals.

As an example the curve in the fermat surface of section 1.5.2 is an oval whereas the lines in 1.5.3 are, of

course, pseudo-lines. Consider the surface from Section 1.1

In[]:= ts3 = 1.752 - 6.4 x - 11.464 x2 + 0.64 x3 + x^4 + 1.536 y2 +

0.64 x y2 + x2 y2 + 2.88 x^2 z - 5.12 y^2 z + 3.584 z2 + 3.84 x z2 + x2 z2;

We intersect this with the plane z = -1 and get two ovals as shown in the plot in red and green. We

suppress the work.

44 SSchapter1v2.nb

Neither oval is a curve alone, but the union is the naive space curve {ts3, z + 1}. We had to use path

finding to draw these.

There is a new difference between these ovals. The red oval is null homotopic which means that if one

thinks of this as a ring on a finger then it can be slipped off without hurting the surface. More precisely

it can be moved continuously on the surface until it degenerates into a point at the bottom. The reader

should note here that we are purposely being heuristic. On the other hand the green oval can not be

obviously deformed to a point or “removed”. Another difference is that the red oval separates the

surface into the part on that finger which is above the oval and the small part below the oval. Again it is

not clear from this picture if the green oval does this, we will have to wait until later when we treat

these surfaces as projective surfaces. The surface in Section 1.4 called ts5 (in step 5) gives a better

picture, work suppressed.

ts5 = 9 - 81 x +
1361 x2

16
-
101 x4

16
+ 16 y2 -

117 x2 y2

16
- y4 +

81 x z

2
-

117 x2 z

2
+
27 x3 z

2
- 16 y2 z +

27

2
x y2 z + 6 z2 - 27 x z2 -

85 x2 z2

16
+
27 x z3

2
+ z4;

SSchapter1v2.nb 45

Here the green oval, a subcurve of the naive curve {ts5, y} , clearly does not separate this surface. Of

course our 6 curves on the torus in Section 1.4 also do not separate the torus.

We also note from the torus example that the 3 horizontal curves each meet the three vertical curves in

exactly one point. This is in stark difference where any algebraic curve meets an oval in an even num -

ber of points by multiplicity. That property of an oval was a crucial step in our proof of Harnak’s Theo -

rem, but it not true in the surface case. The other difference is that, in general, ovals do not have an

inside and outside like plane ovals. Some, like the end of the finger of ts3 do, that is, the end part is

topologically equivalent to a disk while the other part is not.

An example here is the sphere which, if anything, has two interiors when cut by the equator. The

equator is clearly null-homotopic and can be deformed to either the north or south poles.

In[]:= sphere = x^2 + y^2 + z^2 - 1;

equator = 
2 t

1 + t^2
,
1 - t^2

1 + t^2
, 0;

46 SSchapter1v2.nb

In[]:= Show [ContourPlot3D [sphere ⩵ 0, {x, -1.5, 1.5}, {y, -1.5, 1.5}, {z, -1.5, 1.5},

Mesh → None], ParametricPlot3D [equator, {t, -20, 20}, PlotStyle → Blue]]

Out[]=

In summary, there are three kinds of closed curves/ subcurves. The pseudo-lines, the non-null-homo -

topic ovals and the null-homotopic ovals. The first two do not separate a surface into connected

components while he third does separate the surface. O�en we will call a non-null-homotopic oval an

essential oval.

SSchapter1v2.nb 47

1.6 Rational Points and Rational Surfaces
We have been discussing rationally parameterized surfaces, Section 2. Here we make the distinction

between these and Rational surfaces, note the capital R. These are rationally parameterized surfaces

with the additional property that the coefficients of all the polynomials in the numerators and denomi -

nators have rational, equivalently integer, coefficients. In previous sections most of my examples are

of this type, but given my wide use of Mathematica machine numbers it would certainly be permissible

to use a non-rational machine number as a coefficient.

An observation is that because a Rational parameterization has only rational coefficients then every

rational value of the parameters gives a rational point, that is a point where all components are ratio -

nal numbers. For example for the torus

In[]:= Tor = 
4 s 1 + t + t2

1 + s2 × 1 + t2
, -

2 × -1 + s2 - t + s2 t - t2 + s2 t2
1 + s2 × 1 + t2

,
1 - t2 × 1 + s2
1 + t2 × 1 + s2

;

if one takes, say t =
13

7
, s =

21

4
 then

In[]:= p = Tor /. {s → 21 / 4, t → 13 / 7}

Out[]= 
51 912

49 813
, -

131 325

49 813
, -

60

109


one gets this horrible denominator but none-the-less a rational number. We don’t notice since we

work numerically and the point appears as

In[]:= N[p]

Out[]= {1.04214, -2.63636, -0.550459 }

which looks like any other point. But we have illustrated the following fact:

The set of rational points in a rational surface is dense.

The precise meaning is that for any point on the rational surface and any ϵ > 0 there is a rational point

within euclidean distance ϵ of that point. This also works for a rational curve which implies, using the

fact that the circle x2 + y2 - 1 is rational , that any right triangle is arbitrarily close to a right triangle

with rational sides. If the early mathematicians knew this there would be no need for irrational num -

bers. But of course Euclid never thought about fractions like

In[]:= -p〚2〛

Out[]=

131 325

49 813

We may then ask the question about a general surface: are there many rational points? For curves with

only rational coefficients Gerd Faltings proved in 1983 a 1922 conjecture of Louis Mordell that if the

genus is 2 or greater there can only be finitely many rational points. It turns out that this is more

complicated for surfaces. Here is one of many places where algebraic geometry meets number theory.

The Fermat surface used in the previous section is a good example. This is a surface that is known to

not be rational. Yet we noticed that there are 3 rational lines, {t, -t, -1}, {t, -1, -t}, {-1, t, -t}. Thus

48 SSchapter1v2.nb

plugging in any rational value for t gives a rational point of the surface. So there are infinitely many

rational points in this surface. Are there others?

We can experiment with Mathematica . A Diophantine problem is to find integer solutions to a polyno -

mial equation with integer coefficients. Mathematica has some good algorithms to find solutions to

these problems. A general routine is the build in FindInstance. In this case we can use it as follows.

We start with the equation of the Fermat surface

In[]:= fermat = x^3 + y^3 + z^3 + 1;

To get rational solutions we homogenize this by replacing 1 by a new variable w which we will use as a

denominator.

In[]:= fermatH = x^3 + y^3 + z^3 + w^3;

In[]:= FindInstance [fermatH ⩵ 0, {x, y, z, w}, Integers]

Out[]= {{x → 0, y → 0, z → 0, w → 0}}

That was rather obvious, but doesn’t actually give a rational solution, try again.

In[]:= FindInstance [fermatH ⩵ 0 && w ≠ 0, {x, y, z, w}, Integers]

Out[]= {{x → 1, y → -1, z → -1, w → 1}}

Still quite obvious but gives {1, -1, 1}, a point in one of our lines. Lets try for a point not on one of our

lines.

In[]:= FindInstance [fermatH ⩵ 0 && (x + y) (x + z) (y + z) ≠ 0, {x, y, z, w}, Integers]

Out[]= {{x → 12, y → 1, z → -9, w → -10}}

Now this is interesting, the point - 12

10
, -

1

10
,

-9

-10
 is in our surface:

In[]:= fermat /. Thread {x, y, z} → -
12

10
, -

1

10
,

-9

-10


Out[]= 0

In principal, FindInstance will give a desired number of solutions, but for this problem it will not.

In[]:= FindInstance [fermatH ⩵ 0 && (x + y) (x + z) (y + z) ≠ 0, {x, y, z, w}, Integers , 2]

FindInstance : The methods available to FindInstance are insufficient to find the requested instances or prove

they do not exist .

Out[]= FindInstance w3 + x3 + y3 + z3 ⩵ 0 && (x + y) (x + z) (y + z) ≠ 0, {x, y, z, w}, ℤ, 2

so we must make do with one solution at a time, even though permutations of the coordinates will give

another solution due to the symmetry of the problem.

I pause to give a nice way to get from the FindInstance output to the affine rational point. Let

SSchapter1v2.nb 49

In[]:= A = {{1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 0}};

A // MatrixForm

Out[]//MatrixForm=

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

We take the output of FindInstance using only the first instance, changing the conditions may give a

new instance

In[]:= inst = {x, y, z, w} /.

FindInstance [fermatH ⩵ 0 && (x + y) (x + z) (y + z) ≠ 0 && w > 5, {x, y, z, w}, Integers]〚1〛
Out[]= {6, 1, -9, 8}

Now we use

In[]:= fltMD [inst, A]

Out[]= 
3

4
,
1

8
, -

9

8


Further we can replace A by any permutation of the first 3 rows of A to get additional solutions by

permuting the components. As the the lower bound for w gets larger this will take more time

In[]:= inst = Timing [{x, y, z, w} /. FindInstance [fermatH ⩵ 0 &&

(x + y) (x + z) (y + z) ≠ 0 && x^2 + y^2 + z^2 + w^2 > 700, {x, y, z, w}, Integers]〚1〛]
Out[]= {8.26453, {-24, -2, 18, 20}}

Proceeding this way I found 6 instances which a�er permuting

In[]:= fermatH /. Thread [{x, y, z, w} → {-24, -2, 18, 20}]

which, a�er permuting gave 36 different solutions not on the three lines. Plotting I get

50 SSchapter1v2.nb

In[]:= Show [ContourPlot3D [x^3 + y^3 + z^3 + 1 ⩵ 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh → None],

ParametricPlot3D [{{t, -t, -1}, {t, -1, -t}, {-1, t, -t}}, {t, -20, 20}, PlotStyle → Blue],

Graphics3D [{Red, PointSize [.02], Point [S]}]]

Out[]=

The symmetry is partly due to the symmetry of the surface and our permutations but there are 10

points in 3 of the non-central sectors in somewhat of an oval pattern. The symmetry in the central

triangle is completely explained by the 6 symmetries of one instance but not the other symmetries.

Perhaps there are 3 other rational curves on this surface? There certainly are lots of other rational

points to find here so this is, to me, an open problem.

SSchapter1v2.nb 51

1.7Trigonometric Parameterization
In this section I give some other parameterized surfaces using rational parametric functions as proxies

for trigonometric Cos, Sin parameterizations. It is based on the parameterization of the circle I have

been using

In[]:= circ2D = {2 t / (1 + t^2), (1 - t^2) / (1 + t^2)}

Out[]= 
2 t

1 + t2
,
1 - t2

1 + t2


In[]:= Show [ParametricPlot [{2 t / (1 + t^2), (1 - t^2) / (1 + t^2)}, {t, -15, 15},

PlotStyle → {Directive [Thickness [.025], Orange]}, PlotRange → Full, Axes → None],

ParametricPlot [{Cos[u], Sin[u]}, {u, -Pi, Pi}, PlotStyle → Directive [Black, Dashed]],

ImageSize → Small]

Out[]=

O�en, in this book on surfaces I will use the following curve

circ3D = {2 t / (1 + t^2), (1 - t^2) / (1 + t^2), 0}

Theoretically the parameter t should actually run from -∞ ≤ t ≤ ∞ where at the endpoints we mean of

course the limit. In practice we can use a large bounded range. We will use s, t exclusively for the

rational parameterizations with u, v used in the trigonometric ones so there will be no notational

confusion. Here u, v will normally run as above -π ≤ u, v ≤ π .

I mention here that some of these parameterizations in from the book

CRC Standard Curves and Surfaces with Mathematica by David H. von Seggern. Others may be found at

Wolfram MathWorld and the Wolfram Demonstrations Project.

1.7.2 Parametric surfaces via trigonometry

The Sphere and hyperboloid

In[]:= trigSphere = {Sin[u] Cos[v], Sin[u] Sin[v], Cos[u]};

rationalSphere = 
1 - t2 × 2 s

1 + t2 × 1 + s2
,

1 - t2 × 1 - s2
1 + t2 × 1 + s2

,
2 t 1 + s2

1 + t2 × 1 + s2
;

52 SSchapter1v2.nb

I earlier mentioned the rational parameterization of the hyperboloid, I repeat so we have these all

together .

In[]:= hyperboloid3D = 
t - s^2 t

1 - s^2
,
1 + s2 - 2 s t

1 - s2
,
2 s - t - s2 t

1 - s2
;

The Torus: the standard parameterization is the following where a is the large radius and b the small .

Our torus in Section 4 parameterization is based on this.

trigTorus = {(a + b Cos[v]) Cos[u], (a + b Cos[v]) Sin[u], b Sin[v]};

For large radius 4 and small radius 2

In[]:= TrigTorus = trigTorus /. {a → 4, b → 2}

Out[]= {Cos[u] (4 + 2 Cos[v]), (4 + 2 Cos[v]) Sin[u], 2 Sin[v]}

In[]:= ParametricPlot3D [TrigTorus , {u, -Pi, Pi}, {v, -Pi, Pi}, Mesh → None]

Out[]=

The Crosscap

In[]:= crocap = {Sin[u] Sin[2 v] / 2, Sin[2 u] Cos[v]^2, Cos[2 u] Cos[v]^2};

SSchapter1v2.nb 53

In[]:= ParametricPlot3D [crocap, {u, -Pi, Pi}, {v, -Pi, Pi}, Boxed → False, Axes → False]

Out[]=

This is algebraic since elementary trig identities, eg. Sin [2 u] = 2 Sin [u] Cos [u], allow one to write these

parameters in terms of the proxies for sin3 and cosine. Also the square of the proxies are again rational

functions. These equations can get quite involved and the implicit equations may be of very high

degree.

Astroidal Surface

In[]:= astroid = {(Cos[u] Cos[v])^3, (Sin[u] Cos[v])^3, Sin[v]^3}

Out[]= Cos[u]3 Cos[v]3, Cos[v]3 Sin[u]3, Sin[v]3

In[]:= ParametricPlot3D [astroid, {u, -Pi, Pi}, {v, -Pi, Pi},

MaxRecursion → 3, PlotRange → 1, Axes → False, Boxed → False]

Out[]=

will be algebraic. von Seggern tells us the equation is

54 SSchapter1v2.nb

x2/3 + y2/3 + z2/3 = 1

which is not algebraic. But our theorems of Section 1.3 tell us there be algebraic equations as well.

The Cosine Surface likewise will be algebraic because of the elementary formula for Cos[u+v] =Cos[u]

Cos[v]-Sin[u] Sin[v]

In[]:= cosSurf = {Cos[u], Cos[v], Cos[u + v]};

In[]:= ParametricPlot3D [cosSurf, {u, -Pi, Pi}, {v, -Pi, Pi},

MaxRecursion → 3, PlotRange → 1, Axes → False, Boxed → False]

Out[]=

An example of a surface which is not algebraic is the Möbius Strip.

In[]:= moeband = {Cos[u] (1 + t Cos[u / 2]), Sin[u] (1 + t Cos[u / 2]), t Sin[u / 2]}

Out[]=  1 + t Cos
u

2
 Cos[u], 1 + t Cos

u

2
 Sin[u], t Sin

u

2


In[]:= ParametricPlot3D [moeband, {u, -Pi, Pi}, {t, -.5, .5}, MaxRecursion → 3,

PlotRange → All, PlotRange → 1, Axes → False, Boxed → False]

Out[]=

As pointed out in my Plane Curve Book this is a one-sided surface and cannot be a naive algebraic

SSchapter1v2.nb 55

surface. The problem is not combining parameters u, t, rather the Cos  u

2
 can not be expressed polyno -

mially in terms of Sin[u] and Cos[u].

The spirals likewise cannot be algebraic because we cannot use the same variable as algebraic and

trigonometric parameter. For example van Seggern gives

vSspiral = {a Cos[n v] (1 + Cos[u]) + c Cos[n v], a Sin[n v] (1 + Cos[u]) + c Sin[n v], b v/2/Pi + a Sin[u]};

where a, b, c are positive numbers and n is a positive integer.

The example given has

In[]:= vSspiral1 = vSspiral /. {a → .1, b → 1, c → .5, n → 4}

Out[]= 0.5 Cos[4 v] + 0.1 × (1 + Cos[u]) Cos[4 v], 0.5 Sin[4 v] + 0.1 × (1 + Cos[u]) Sin[4 v],
v

2 π
+ 0.1 Sin[u]

In[]:= ParametricPlot3D [vSspiral1 , {u, 0, 2 Pi}, {v, 0, 2 Pi}]

Out[]=

But parameter v is being used in both a trigonometric and analytic parameter in the last coordinate so

this will not define a naive implicit surface.

1.7.3 The Klein Bottle

The Klein Bottle is a simple topological surface in 4-space obtained by gluing the sides of the square

blue to blue and red to red in the indicated directions without self intersections, the last instruction

cannot be done in 3 space.

We take our exposition from Wolfram Mathworld. An implicit equation of a projection into 3-space is

In[]:= KbottEq = (x^2 + y^2 + z^2 + 2 y - 1) ((x^2 + y^2 + z^2 - 2 y - 1)^2 - 8 z^2) +

16 x z (x^2 + y^2 + z^2 - 2 y - 1);

56 SSchapter1v2.nb

In[]:= {ContourPlot3D [KbottEq ⩵ 0, {x, -4, 4}, {y, -4, 4}, {z, -4, 4}, Mesh → None,

ContourStyle → Opacity [.7], MaxRecursion → 4, Axes → False, Boxed → False],

ContourPlot3D [KbottEq ⩵ 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh → None,

ContourStyle → Opacity [.7], MaxRecursion → 4, Axes → False]}

Out[]=  , 

In the right hand plot we slice the surface by sides of the box to better see the interior. Of course

projecting causes self intersections. Here is an interesting trigonometric parameterization of an inter -

pretation of this 4 dimensional surface.

In[]:= sq2 = N[Sqrt [2]];

kbx = Cos[u] (Cos[.5 u] (sq2 + Cos[v]) + Sin[.5 u] Sin[v] Cos[v]);

kby = Sin[u] (Cos[.5 u] (sq2 + Cos[v]) + Sin[.5 u] Sin[v] Cos[v]);

kbz = Sin[.5 u] Sin[v] + Cos[.5 u] Sin[2 v];

kbPar = {kbx, kby, kbz}

Out[]= {Cos[u] (Cos[0.5 u] (1.41421 + Cos[v]) + Cos[v] Sin[0.5 u] Sin[v]),

Sin[u] (Cos[0.5 u] (1.41421 + Cos[v]) + Cos[v] Sin[0.5 u] Sin[v]),

Sin[0.5 u] Sin[v] + Cos[0.5 u] Sin[2 v]}

SSchapter1v2.nb 57

In[]:= ParametricPlot3D [kbPar, {u, 0, 4 Pi},

{v, 0, 4 Pi}, PlotRange → All, Axes → False, Boxed → False]

Out[]=

In[]:= Simplify [KbottEq /. Thread [{x, y, z} → (kbPar /. {u → 3, v → 2})]]

Out[]= 1.15968

This does not satisfy the implicit equation given and is not guaranteed to give such an equation

because of the use of half angles , .5 u, .5 v. But it does show another self intersecting parametric

surface.

1.8 Fractional Linear Transformations
We have seen Fractional Linear Transformations before in my curve books and even in Chapter 1 of this

book . But as a review, in Mathematica they are given by the built - in TransformationFunction . These

are also a special formulation of Projective Linear Transformations, the name Fractional Linear Transfor -

mations comes from the book [Abhyankar].

1.8.1 Basic concepts

As a first example, from Wolfram documentation,

58 SSchapter1v2.nb

In[]:= t = RotationTransform [θ, {0, 0, 1}]

Out[]= TransformationFunction 
Cos[θ] -Sin[θ] 0 0

Sin[θ] Cos[θ] 0 0

0 0 1 0

0 0 0 1



As in this example in this Chapter we are only working in 3 - Space so the TransformationMatrix which

the argument of this function is a 4 ×4 matrix. In this illustration it is broken up into parts, the upper

le� 3⨯3 is the matrix of a linear transformation. The 3×1 matrix to the right is a translation, in this case

the zero transformation. With the given bottom row, the transform is an affine transform, that is the

affine three space remains fixed. However if the three le� hand zeros are replaced by three numbers

not all zero and the corner number 1 is replaced by some other non-zero number then we have a

projective transformation. Essentially the last row will give a specialization. In this book the transforma -

tion is always assumed to be invertible. The best check is with our function matrixrank with a loose

tolerance so it will be numerically well behaved. We want the result to be 4.

In our special case the TransformationFunction will take a list of length 3 as an argument, that is an

affine point. It will return another such point. But unless the last row is {0, 0, 0, a}, a ≠ 0, this point

returned in in a different specialization of projective space, so this will be a projective transformation.

As in my other books I can define a push-forward functor which works on surfaces rather than points,

that is, it gives the equation of the surface obtained by applying the transformation function

Examples:

In[]:= A1 =

Cos[Pi / 4] -Sin[Pi / 4] 0 0

Sin[Pi / 4] Cos[Pi / 4] 0 0

0 0 1 0

0 0 0 1

;

N[A1] // MatrixForm

Out[]//MatrixForm=

0.707107 -0.707107 0. 0.

0.707107 0.707107 0. 0.

0. 0. 1. 0.

0. 0. 0. 1.

In[]:= N[TransformationFunction [A1][{1, 2, 3}]]

Out[]= {-0.707107 , 2.12132, 3.}

This is a rotation around the z-axis.

In[]:= TransformationFunction [A1][{0, 0, 2}]

Out[]= {0, 0, 2}

SSchapter1v2.nb 59

In[]:= B = Append [Join [Orthogonalize [RandomReal [{-1, 1}, {3, 3}]], {{0}, {0}, {0}}, 2], {0, 0, 0, 1}];

B // MatrixForm

Out[]//MatrixForm=

-0.638947 -0.0671356 0.766315 0

0.395362 0.825883 0.402003 0

-0.659876 0.55983 -0.501153 0

0 0 0 1

we get a rotation of affine 3-space with axis some line through the origin if the matrix has determinant 1

, otherwise the determinant is -1 and it is a reflection of affine 3-space with mirror a plane through the

origin.

In[]:= Det[B]

Out[]= 1.

In[]:= TransformationFunction [B][{1, 2, 3}]

Out[]= {1.52573, 3.25314, -1.04367 }

In[]:= If

Out[]= If

In[]:= B1 = {{1, 0, 0, 2}, {0, 1, 0, -4}, {0, 0, 1, 3}, {0, 0, 0, 1}};

B1 // MatrixForm

Out[]//MatrixForm=

1 0 0 2

0 1 0 -4

0 0 1 3

0 0 0 1

Then we get a translation of affine space by vector {2,-4,3}

In[]:= TransformationFunction [B1][{1, 1, 1}]

Out[]= {3, -3, 4}

In[]:= If

Out[]= If

In[]:= B2 = Append [Join [Orthogonalize [RandomReal [{-1, 1}, {3, 3}]], {{2}, {-3}, {5}}, 2], {0, 0, 0, 1}];

In[]:= B2 // MatrixForm

Out[]//MatrixForm=

0.642387 -0.221533 0.733663 2

0.642974 0.676728 -0.35864 -3

0.41704 -0.702113 -0.577162 5

0 0 0 1

we will get a rotation about a line or a refection about a plane not necessarily through the origin.

60 SSchapter1v2.nb

In[]:= TransformationFunction [B2][{1, 1, 1}]

Out[]= {3.15452, -2.03894, 4.13777 }

Finally if we just take a random invertible matrix

In[]:= B4 = RandomReal [{-1, 1}, {4, 4}];

B4 // MatrixForm

Out[]//MatrixForm=

0.0653255 0.557682 -0.528581 -0.449588

0.1035 -0.630132 0.570384 -0.720002

-0.87486 0.0275579 -0.989399 -0.45492

0.915743 0.779111 0.790421 0.946909

we get an affine transformation followed by a specialization

In[]:= TransformationFunction [B4][{1, 1, 1}]

Out[]= {-0.389523 , -1.44758, -1.11267 }

where this last point is in a different specialization of projective space .

You may have seen in my books and/or articles that I can use transformation functions to define ratio -

nal parametric curves.

In[]:= Clear [t]

In[]:= C1 = RandomInteger [{-9, 9}, {4, 4}]

Out[]= {{-2, 6, 3, -4}, {0, -6, -8, -9}, {7, 2, -5, -5}, {-3, 6, 6, -6}}

In[]:= matrixrank [C1, .00005]

Out[]= 4

In[]:= TransformationFunction [C1][{t, t^2, t^3}]

Out[]= 
-4 - 2 t + 6 t2 + 3 t3

-6 - 3 t + 6 t2 + 6 t3
,

-9 - 6 t2 - 8 t3

-6 - 3 t + 6 t2 + 6 t3
,

-5 + 7 t + 2 t2 - 5 t3

-6 - 3 t + 6 t2 + 6 t3


Thus TransformationFunction[A] takes triples of variables as arguments as well as triples of points .

I will o�en abbreviate TransformationFunction[A][p] by my function fltMD[p,A]. To see the action

on all points of the projective plane I have a function fltiMD, this will take triples or quadruples, affine or

projective points and test the result to see if it is affine or projective. This function does not accept

variables as arguments.

In[]:= fltiMD [{1, 2, 3}, B4]

qi = fltiMD [{1, 2, 3, 0}, B4]

Out[]= {-0.0502707 , -1.74485, -1.28394 }

Out[]= {0.267793 , -1.47664, -0.85952 }

SSchapter1v2.nb 61

In[]:= pi = fltiMD [qi, Inverse [B4]]

Out[]= {2.40765, -1.13159, -2.0686 }

Note this last answer can be normalized :

In[]:= pi  pi〚1〛
Out[]= {1., -0.47, -0.859179 }

One important fact we will use later is that these TransformationMatrices are themselves homoge -

neous things in that we can multiply them by a non-zero constant without changing the result. For

example recall above

In[]:= fltMD [{1, 1, 1}, B4]

Out[]= {-0.389523 , -1.44758, -1.11267 }

But replacing B4 by 3*B4

In[]:= 3 * B4 // MatrixForm

Out[]//MatrixForm=

0.0530815 -0.601544 -0.410181 2.77583

1.69767 1.95791 2.50438 0.593205

-0.633522 1.83377 1.53556 2.45497

-2.62067 -2.94403 -0.126926 1.02647

In[]:= fltMD [{1, 1, 1}, 3 B4]

Out[]= {-0.389523 , -1.44758, -1.11267 }

Another important property of these transforms is that multiplication of transformation matrices

corresponds to composition of transformation functions. Recall the transformation matrix A1 above

rotates space around the z-axis. B1 translates all points by the vector {2,-4,3}

In[]:= tr1 = fltMD [{1, 1, 1}, A1]

fltMD [{0, Sqrt [2], 1}, B1]

fltMD [{1, 1, 1}, B1.A1]

fltMD [{1, 1, 1}, A1.B1]

Out[]= 0, 2 , 1

Out[]= 2, -4 + 2 , 4

Out[]= 2, -4 + 2 , 4

Out[]= 3 2 , 0, 4

So transforming by A1 first and then transforming the result by B1 gives the same result as transforming

by the product B1.A1 Notice that transforming by A1.B1 gives a different answer because neither

composition of transformations or matrix multiplication is commutative.

One consequence of this, since all our transformation matrices are assumed invertible, is that transform -

62 SSchapter1v2.nb

ing using the inverse matrix gives the inverse transform. So all these transformation functions are

invertible, hence 1-1 and onto.

In[]:= fltMD [{0, Sqrt [2], 1}, Inverse [A1]]

Out[]= {1, 1, 1}

1.8.2 The group PGL(4,ℝ)

These 2 properties say the set of transformation functions with invertible transformation matrices is a

group. (See any abstract algebra book or section 6.1 of my plane curve book . This particular group has

been extensively studied and is known in the literature as PGL(4,ℝ), the group of invertible 4×4 matrices

modulo scalar multiplication. This group of transformations is recognized as the correct group for

projective geometry so if there is an invertible transformation function taking surface S1 to surface S2

we say S1 is projectively equivalent to S2.

I will try to make a few comments on the relationship between projective linear transformations and

our Transformation Functions, it somewhat complicated but not really needed for the rest of this book.

If one is willing to stay entirely within the projective notation, 4 components, then to apply the transfor -

mation given by an invertible 4×4 matrix A one just uses matrix multiplication. But remember that the

input, matrix and output are all homogeneous so the answer may differ from one’s expectations by a

scalar multiple.

As an example consider the transformation A which just re-arranges the 4 projective vertex points V,

most of which are invisible.

In[]:= V = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}};

A = {{0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}, {1, 0, 0, 0}};

A // MatrixForm

Out[]//MatrixForm=

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

Applying A to each projective point in V we get

In[]:= A.# & /@ V

Out[]= {{0, 0, 0, 1}, {1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}}

Notice first if we denote the points in V as v1, v2, v3,, v4 then the shi� is counterclockwise in that Av1= v4,

Av4= v3, and so on.

Notice second that this shi�s them as columns, not rows. This is somewhat not expected as we thing

of transformations matrices from a row point of view, as the first 3 rows contain linear action in the first

3 coordinates and translations in the 4th. The last row is different as it gives denominators. When

working with actual numbers (fractions or machine numbers) in our coordinates we can somewhat

SSchapter1v2.nb 63

mimic a projective transformation which involves invisible points using our special version of a transfor -

mation function fltiMD .

In[]:= fltiMD [#, A] & /@ V

Out[]= {{0, 0, 0}, {1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}}

This is almost the same except the first is reduced to an affine number since the 4th component is non-

zero. But if we start with a general invisible point it may look different

In[]:= w1 = {3, 2, 1, 0}

w2 = fltiMD [w1, A]

w3 = fltiMD [w2, A]

w4 = fltiMD [w3, A]

fltiMD [w4, A]

Out[]= {3, 2, 1, 0}

Out[]= 
2

3
,
1

3
, 0

Out[]= 
1

2
, 0,

3

2


Out[]= {0, 3, 2}

Out[]= {3, 2, 1, 0}

we cycle around 4 points, 3 of which are affine. In this case if we write each affine point in projective

notation with the denominator being the last coordinate then we are simply permuting the coordinates

counterclockwise. But if we start with a visible number

In[]:= u1 = {5, 6, 7};

u2 = fltMD [u1, A]

u3 = fltMD [u2, A]

u4 = fltMD [u3, A]

fltMD [u4, A]

Out[]= 
6

5
,
7

5
,
1

5


Out[]= 
7

6
,
1

6
,
5

6


Out[]= 
1

7
,
5

7
,
6

7


Out[]= {5, 6, 7}

we still cycle though 4 visible points but not in the expected order. The thing to remember is that fltMD

and fltiMD are giving results in a different specialization of projective space in each case.

64 SSchapter1v2.nb

1.8.3 The push-forward operator

The natural action on a surface by an arbitrary transformation is to transform it to its inverse image

under the transform. However since our transforms will be invertible if we do a fractional linear transfor -

mation from surface S1 to S2 then taking the inverse image of the inverse transformation gives us the

image of a surface under the original transformation. This gives us what is called a push forward

functor instead of just mapping points to points it maps naive surfaces to naive surfaces. The code we

will use is called FLTNS which is a special case of FLT3D in my Space Curve Book. The full code in

GlobalFunctionsS.nb, here is shortened code without checks to show how simple it is. Note that this

routine involves homogenizing and specializing even though we have affine equations as input and

output. In the Space Curve Book I have a general push-forward function for non-invertible transforma -

tion matrices, it takes a large part of Chapter 2 of that book and many subroutines to describe.

In[]:= FLTNS [f_, A_, X_] := Module [{B, d, g, h, t, n},

B = Inverse [A].Append [X, t];

d = tDegMD [f, X];

g = Expand [t^d (f /. Thread [X → X / t])];

h = Expand [g /. Thread [Append [X, t] → B]];

Chop [h /. {t → 1}, dTol]]

Example : Consider the parabolic ellipsoid, the orange is original, blue is the transform.

In[]:= f = x^2 + y^2 - z;

In[]:= g1 = FLTNS [f, B1, {x, y, z}]

g2 = FLTNS [f, B2, {x, y, z}]

B3 = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, -1, -.4}, {0, 0, 1, .2}};

B3 // MatrixForm

g3 = FLTNS [f, B3, {x, y, z}]

Out[]= 23 - 4 x + x2 + 8 y + y2 - z

Out[]= 37.5401 - 5.23631 x + 0.461738 x2 + 6.60435 y + 0.526242 x y +

0.871377 y2 - 9.02741 z + 0.846884 x z - 0.413987 y z + 0.666885 z2

Out[]//MatrixForm=

1 0 0 0

0 1 0 0

0 0 -1 -0.4

0 0 1 0.2

Out[]= 10. + 1. x2 + 1. y2 + 15. z + 5. z2

SSchapter1v2.nb 65

In[]:= {ContourPlot3D [{f ⩵ 0, g1 ⩵ 0}, {x, -6, 6}, {y, -8, 6}, {z, -1, 7}, Mesh → None,

ImageSize → Small], ContourPlot3D [{f ⩵ 0, g2 ⩵ 0}, {x, -6, 6}, {y, -8, 6},

{z, -1, 7}, Mesh → None, ImageSize → Small], ContourPlot3D [{f ⩵ 0, g3 ⩵ 0},

{x, -3, 3}, {y, -3, 3}, {z, -4, 3}, Mesh → None, ImageSize → Small]}

Out[]=  , , 

Note that in the last plot the projective transformation takes the parabolic ellipsoid to an ellipsoid.

These surfaces are projectively equivalent.

A nice feature of Mathematica is that the built-in Inverse function for matrices can recognize symbolic

matrices in a form that is generically invertible and give the generic inverse. Here is one way we may

use it : Consider the plane curve given by

In[]:= f = -3 + 3 x - 4 y + 2 x^2 + 2 y^2;

We want to transform this to the unit circle . This is actually a 2 dimensional problem but we can

consider z a free variable.

In[]:= T = {{1, 0, 0, a}, {0, 1, 0, b}, {0, 0, 1, 0}, {0, 0, 0, d}};

g = FLTNS [f, T, {x, y, z}]

Out[]= -
3

d2
-
3 a

d2
+
2 a2

d2
+
4 b

d2
+
2 b2

d2
+
3 x

d
-
4 a x

d
+ 2 x2 -

4 y

d
-
4 b y

d
+ 2 y2

In[]:= c0 = g /. Thread [{x, y, z} → {0, 0, 0}]

Out[]= -
3

d2
-
3 a

d2
+
2 a2

d2
+
4 b

d2
+
2 b2

d2

In[]:= cx = Coefficient [g, x] /. Thread [{x, y, z} → {0, 0, 0}]

Out[]=

3

d
-
4 a

d

In[]:= cy = Coefficient [g, y] /. Thread [{x, y, z} → {0, 0, 0}]

Out[]= -
4

d
-
4 b

d

66 SSchapter1v2.nb

In[]:= sol = Solve [c0 ⩵ -2 && cx ⩵ 0 && cy ⩵ 0, {a, b, c, d}, Reals]

Out[]= a →
3

4
, b → -1, d → -

7

4
, a →

3

4
, b → -1, d →

7

4


Picking either solution

In[]:= g1 = g /. sol〚2〛
Out[]= -2 + 2 x2 + 2 y2

which is equivalent to -1 + x2 + y2. So

In[]:= T1 = T /. sol〚2〛
FLTNS [f, T1, {x, y, z}]

Out[]= 1, 0, 0,
3

4
, {0, 1, 0, -1}, {0, 0, 1, 0}, 0, 0, 0,

7

4


Out[]= -2 + 2 x2 + 2 y2

1.8.4 Some important transformations .

Here are some transformation functions that will prove useful in the sequel .

1.8.4.1 Miscellaneous transformations

A set of points in ℙ^3 possibly including infinite points, is in general position if no k + 1 points lie in a k -

1 dimensional linear set . (Recall that generically k + 1 points determine a k dimensional set .) A suffi -

cient condition that a set of 4 points is in general position is that the matrix with these 4 points as

columns (or rows) is invertible. There is also a general position tester in GlobalFunctionsS.nb called

gpTestMD .

It is a well known fact that there is a projective linear transformation, that is transformation in

PGL[4,ℝ], which takes any 4 projective points forming set P1 in general position to any 4 projective

points forming set P2 in general position. Working strictly projectively with 4×4 matrices as in 2.2.2 one

creates a matrix B using the 4 points in P2 as columns and a matrix A using the 4 points in P1 as

columns. then the desired transformation matrix is B.Inverse[A].

If all 8 points above are affine, and this can be made to happen by specializing at a plane containing

none of them, then there is a routine to find an affine transformation matrix with a Transformation

Function that sends the general position points in P1 to the 4 points in P2. As you will see this is not so

obvious.

SSchapter1v2.nb 67

In[]:= getTransformMatrix [At_, Bt_] := Module [{A, B, d, F, G, a, b, AA, BB, L},

A = Transpose [At];

B = Transpose [Bt];

d = Dimensions [A]〚1〛;
If[! gpTestMD [Transpose [A], d, .0003], Echo ["Not general Position "];

Abort []];

a = Take [A, All, -1];

G = Append [Join [IdentityMatrix [d], -a, 2], Append [Table [0, {d}], 1]];

AA = Transpose [Table [Transpose [A]〚i〛 - Flatten [a], {i, d}]];

BB = Transpose [Table [Transpose [B]〚i〛 - Transpose [B]〚d + 1〛, {i, d}]];

L = BB.Inverse [AA];

F = Append [Join [L, Take [B, All, -1], 2], Append [Table [0, {d}], 1]];

F.G]

Example :

In[]:= At = {{1, 0, 5}, {2, -1, 4}, {2, -1, -4}, {-2, -1, -2}};

Bt = {{-1, 2, 4}, {2, -5, 4}, {5, 1, -5}, {5, 5, 4}};

In[]:= M = getTransformMatrix [At, Bt];

M // MatrixForm

Out[]//MatrixForm=

-
3

16
-

45

16
-

3

8

17

16

-
11

8

51

8
-

3

4

57

8

-
27

16
-

45

16

9

8

1

16

0 0 0 1

In[]:= fltMD [#, M] & /@ At

Out[]= {{-1, 2, 4}, {2, -5, 4}, {5, 1, -5}, {5, 5, 4}}

A transformation matrix produces a rotation if it is an affine transformation with upper le� 3×3 subma -

trix an orthogonal matrix with determinant 1. It is a geometric fact that any rotation of ℝ3 will have a

fixed line as an axis. Mathematica differentiate RotationTransform from RotationMatrix in that in the

first case one gets the 4⨯4 transformation matrix we have been discussing, while RotationMatrix is just

the upper le� 3×3 matrix. However in either case the built-in rotations are just linear transformations

so the origin {0,0,0} is always on the axis. Thus for our use we need a more general construction. Here

we will pick two affine intersecting planes and do an orthogonal rotation from one plane to the other.

In particular we translate a point on the intersection line two the origin, use a built-in rotation matrix

and then translate back. The planes are given by their affine equations in variables x,y,z.

68 SSchapter1v2.nb

In[]:= planeRotate3D [plane1_ , plane2_] :=

Module [{p, A1, nplane1, nplane2, w, v, M, A2, nullarr },

pi = FindInstance [plane1 ⩵ 0 && plane2 ⩵ 0 &&

Abs[x] < 8 && Abs[y] < 8 && Abs[z] < 8, {x, y, z}, Reals]〚1〛;
If[Length [pi] < 3, Echo ["no affine intersection "]; Abort []];

p = N[{x, y, z} /. pi];

A1 = {{1, 0, 0, -p〚1〛}, {0, 1, 0, -p〚2〛}, {0, 0, 1, -p〚3〛}, {0, 0, 0, 1}};

nplane1 = FLTNS [plane1, A1, {x, y, z}];

nplane2 = FLTNS [plane2, A1, {x, y, z}];

v = Grad [nplane1, {x, y, z}];

w = Grad [nplane2, {x, y, z}];

M = N[RotationMatrix [{v, w}]];

A2 = Append [Join [M, {{0}, {0}, {0}}, 2], {0, 0, 0, 1}];

Inverse [A1].A2.A1]

Simple Example, note that even exact input will almost always give numerical output. Also note that

this generally gives an affine matrix as output, but never projective.

In[]:= R1 = planeRotate3D [x - 3, y - 2 z + 3];

R1 // MatrixForm

Out[]//MatrixForm=

0. -0.447214 0.894427 1.65836

0.447214 0.8 0.4 -1.94164

-0.894427 0.4 0.2 3.88328

0. 0. 0. 1.

In[]:= planeOut = FLTNS [x - 3, R1, {x, y, z}]

Out[]= 1.34164 + 0.447214 y - 0.894427 z

In[]:= Expand planeOut * 3  planeOut 〚1〛
Out[]= 3. + 1. y - 2. z

To see that the intersecting line given by the two plane equations is fixed

In[]:= fixedPt = SolveValues [x ⩵ 3 && y - 2 z ⩵ -3 && y ⩵ RandomInteger [{-5, 5}], {x, y, z}]〚1〛

Out[]= 3, 2,
5

2


In[]:= TransformationFunction [R1][fixedPt]

Out[]= {3., 2., 2.5}

1.8.5 iTransform

Our most important transform is a projective transform which specializes at a plane, that is makes that

plane invisible, but makes the original plane visible as the plane x + y + z = 1. One can choose the

SSchapter1v2.nb 69

location of the new visible plane by an additional transformation but I find that this choice works best

in most cases. The out put is the transformation matrix, but combining this with FLTNS and Countour -

Plot3D make the previously invisible curve visible. The user must specify a plane to specialize but that

could be random but must, for technical reasons, intersect the plane x + y + z = 2. In particular it

cannot be x + y + z = 1. Intuitively the choice should be far away from any interesting part of a surface

you are working with, but numerically it works best if the coordinates are smallish numbers.

In[]:= iTransform3D [plane_] := Module [{ A1, A2, G },

G = Grad [plane, {x, y, z}];

If[G〚1〛 ⩵ G〚2〛 && G〚2〛 ⩵ G〚3〛, Echo ["Illegal Plane"]; Abort [];];

A1 = planeRotate3D [plane, x + y + z - 2];

A2 = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {1, 1, 1, -2}};

Chop [A2.A1]]

As an example a nice such transform is

In[]:= Ai = iTransform3D [z - 4]

Out[]= {{0.788675 , -0.211325 , 0.57735, -2.73205 }, {-0.211325 , 0.788675 , 0.57735, -2.73205 },

{-0.57735, -0.57735, 0.57735, 0.535898 }, {0, 0, 1.73205, -6.9282 }}

In[]:= clebsch = 81 (x^3 + y^3 + z^3) - 189 (x^2 y + x^2 z + y^2 x + y^2 z + z^2 x + z^2 y) +

54 x y z + 126 (x y + x z + y z) - 9 (x^2 + y^2 + z^2) - 9 (x + y + z) - 1;

In[]:= fi = FLTNS [clebsch, Ai, {x, y, z}]

Out[]= 879.578 - 3605.64 x + 4890.55 x2 - 2206.05 x3 - 3605.64 y + 9909.58 x y - 6746.65 x2 y +

4890.55 y2 - 6746.65 x y2 - 2206.05 y3 - 1930.07 z + 5204.67 x z - 3654.95 x2 z + 5204.67 y z -

6690.14 x y z - 3654.95 y2 z + 1045.68 z2 - 1329.77 x z2 - 1329.77 y z2 + 72.3627 z3

70 SSchapter1v2.nb

In[]:= ContourPlot3D [{fi ⩵ 0, x + y + z ⩵ 1}, {x, -3, 3}, {y, -3, 3}, {z, -3, 3},

Mesh → None, ContourStyle → {Orange, LightGray }, MaxRecursion → 5]

Out[]=

Here are three variants which allow us to specialize in each affine coordinate direction. They are given

as constants.

In[]:= rrtxyz = 4.325098211016204`

Out[]= 4.3251

In[]:= ixTransform3D = Chop [planeRotate3D [x + y + z - 1, x].iTransform3D [x + rrtxyz]]

iyTransform3D = Chop [planeRotate3D [x + y + z - 1, y].iTransform3D [y + rrtxyz]]

izTransform3D = Chop [planeRotate3D [x + y + z - 1, z].iTransform3D [z + rrtxyz]]

Out[]= {{0, 0, 0, 1.1547 }, {0.366025 , 1., 0, 2.74354 },

{0.366025 , 0, 1., 2.74354 }, {1.73205, 0, 0, 7.49129 }}

Out[]= {{1., 0.366025 , 0, 2.74354 }, {0, 0, 0, 1.1547 },

{0, 0.366025 , 1., 2.74354 }, {0, 1.73205, 0, 7.49129 }}

Out[]= {{1., 0, 0.366025 , 2.74354 }, {0, 1., 0.366025 , 2.74354 },

{0, 0, 0, 1.1547 }, {0, 0, 1.73205, 7.49129 }}

SSchapter1v2.nb 71

In[]:= clbx = FLTNS [clebsch, ixTransform3D , {x, y, z}]

clby = FLTNS [clebsch, iyTransform3D , {x, y, z}]

clbz = FLTNS [clebsch, izTransform3D , {x, y, z}]

Out[]= 35.9 - 543.486 x + 2029.39 x2 + 3362.81 x3 - 37.9385 y + 654.589 x y - 4707.97 x2 y -

120.531 y2 + 645.864 x y2 + 81. y3 - 37.9385 z + 654.589 x z - 4707.97 x2 z +

190.939 y z + 666.616 x y z - 189. y2 z - 120.531 z2 + 645.864 x z2 - 189. y z2 + 81. z3

Out[]= 35.9 - 37.9385 x - 120.531 x2 + 81. x3 - 543.486 y + 654.589 x y + 645.864 x2 y +

2029.39 y2 - 4707.97 x y2 + 3362.81 y3 - 37.9385 z + 190.939 x z - 189. x2 z +

654.589 y z + 666.616 x y z - 4707.97 y2 z - 120.531 z2 - 189. x z2 + 645.864 y z2 + 81. z3

Out[]= 35.9 - 37.9385 x - 120.531 x2 + 81. x3 - 37.9385 y + 190.939 x y - 189. x2 y -

120.531 y2 - 189. x y2 + 81. y3 - 543.486 z + 654.589 x z + 645.864 x2 z + 654.589 y z +

666.616 x y z + 645.864 y2 z + 2029.39 z2 - 4707.97 x z2 - 4707.97 y z2 + 3362.81 z3

In[]:= {ContourPlot3D [{clbx ⩵ 0, x ⩵ 0}, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Mesh → None,

MaxRecursion → 4], ContourPlot3D [{clby ⩵ 0, y ⩵ 0}, {x, -2, 2}, {y, -2, 2},

{z, -2, 2}, Mesh → None, MaxRecursion → 4], ContourPlot3D [{clbx ⩵ 0, z ⩵ 0},

{x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Mesh → None, MaxRecursion → 4]}

Out[]=  , , 

This is 3 different views of the same surface but different specializations, in each case the blue plane is

the same infinite plane. However the invisible points on each specialization are visible in the others. In

this example these look much the same because the Clebsch surface is symmetric in the variables

{x,y,z}. In general they can be quite different. Here is an example from Chapter 1.

In[]:= ts3 = 10.75200000000001` - 6.39999999999992` x - 11.463999999999935` x2 +

0.640000000000003` x3 + 0.9999999999999938` x4 + 1.5360000000000196` y2 +

0.6400000000000121` x y2 + 0.9999999999999906` x2 y2 + 2.879999999999961` x2 z -

5.1200000000000205` y2 z + 3.5839999999999983` z2 + 3.8400000000000007` x z2 + 1.` x2 z2

Out[]= 10.752 - 6.4 x - 11.464 x2 + 0.64 x3 + 1. x4 + 1.536 y2 +

0.64 x y2 + 1. x2 y2 + 2.88 x2 z - 5.12 y2 z + 3.584 z2 + 3.84 x z2 + 1. x2 z2

72 SSchapter1v2.nb

In[]:= ContourPlot3D [ts3 ⩵ 0, {x, -8, 8}, {y, -8, 8}, {z, -8, 8}, Mesh → None, ImageSize → Small]

Out[]=

In[]:= ts3x = FLTNS [ts3, ixTransform3D , {x, y, z}];

ts3y = FLTNS [ts3, iyTransform3D , {x, y, z}];

ts3z = FLTNS [ts3, izTransform3D , {x, y, z}];

In[]:= {ContourPlot3D [{ts3x ⩵ 0, x ⩵ 0}, {x, -.1, .2},

{y, -20, 20}, {z, -20, 20}, Mesh → None, MaxRecursion → 4],

ContourPlot3D [{ts3y ⩵ 0, y ⩵ 0}, {x, -20, 20}, {y, -2, 2}, {z, -20, 20},

Mesh → None, MaxRecursion → 4], ContourPlot3D [{ts3z ⩵ 0, z ⩵ 0},

{x, -20, 20}, {y, -20, 20}, {z, -.1, .2}, Mesh → None, MaxRecursion → 4]}

Out[]=  , , 

1.9Projective Surfaces
I will continue with naive and parametric surfaces but now these surfaces will be projective surfaces in

projective real 3 space ℝℙ3. Unless otherwise noted ℝℙ3 will just be denoted ℙ3 in this chapter. For

reasons outlined below one should use the GlobalFunctionsNS.nb dated June 2022 or later rather than

earlier versions of Global Functions.

1.9.1 Projective 3 - space

SSchapter1v2.nb 73

As I have done in my Plane Curve Book and Space Curve Book I will write affine points as triples,

p = {a, b, c} and infinite points as quadruples {a, b, c, 0}. Alternately I may write the affine point as a

projective point p = {a, b, c, 1} . Two affine points are equal if they have the same components but the

projective points as quadruples are homogeneous in the sense that

{a, b, c, d} = r {a, b, c, d} = {r a, r b, r c, r d} for any non-zero real number. Note that {0, 0, 0, 0} is not a

projective point, at least one component must be non-zero.

In my previous books I considered infinite points as directions in a general sense, an arrow with no base

point or length which could have arrow head on either end or both. Parallel arrows were equivalent. In

this book, however, I want to consider infinite points as no different from other points, just points we

can’t see on ordinary 2D or 3D graphics. So I will call a point of the form {a, b, c, 0} an invisible point.

The set of invisible points form a projective plane in the sense of my plane curve book. It should be

noticed that unlike the surfaces in Chapter 1 this is a one sided, non-orientable, surface. If we use

coordinates {x, y, z, w} for general points then this plane is given by w = 0. Actually any plane in ℙ3

given by an equation a x + b y + c z + d w = 0 is a copy of the projective plane and its complement is a

copy of the ordinary affine 3-space ℝ3 and will be called a specialization of ℙ3. Unfortunately there is no

standard way to give affine coordinates unless it is the complement of the plane w = 0. For this reason

we will not use specializations in general directly, rather we will specify them by transformations of

ordinary ℝ3 via my FLT’s in the next section. Among other reasons this will allow us to directly use

Mathematica algorithms designed for 3D, either the built-in ones or ones in my Global Functions

notebooks marked 3D or MD. Thus rather than work directly in ℙ3as is o�en done in the literature, for

example the book by Joe Harris. As we have seen in the space curve book Harris can do nice theory but

his book is short of computations and examples.

Because of the homogeneity of projective points in ℙ3 in order to define projective algebraic subsets we

need to use homogeneous equations. These are sums of monomials in X, Y, Z and W or other conve -

nient letters, all monomials of the same degree. O�entimes we will get lazy as in the previous para -

graph and just use lower case letters but the upper case letters will emphasize that these variables, or

more precisely the homogeneous polynomial they denote, are homogeneous. This means that an

equation such as

W2 + 2 W X - 5 X2 + 3 W Y - 6 X Y + 7 Y2 - 4 W Z + 8 X Z + 9 Y Z + 10 Z2 = 0

is well defined as multiplying each variable by r ≠ 0 not change the validity of this equation. But note

that we may not evaluate an expression such as the le� hand side of the above equation at an arbitrary

projective point because if the result is not zero then it will depend on r. In particular algebraic sets

defined by homogeneous equations do not have a positive or negative side unlike the affine case. Thus

surfaces defined by a homogeneous equation may be one-sided, such as the invisible plane W = 0.

As in my Plane Curve Book given an affine polynomial equation we can homogenize it to get a homoge -

neous equation. While the function homogMD still exists in my Global Functions notebook the follow -

ing version is preferable as the capitalized variables remind one that we are working homogeneously.

In this book we will change our syntax of functions identified by suffix NS so the set of variables will be

74 SSchapter1v2.nb

denoted v or V to distinguish from the homogeneous variable X. This change is actuated in GlobalFunction
sNS.nb.

In[]:= HomogNS [f_, v_, V_] := Module [{h, fass, hrl, deg},

If[Length [V] ≠ Length [v] + 1, Echo ["List X must have length one more than list x"];

Abort []];

fass = Association [CoefficientRules [f, v]];

deg = Max[Total [#] & /@ Keys [fass]];

hrl = Table [Append [k, deg - Total [k]] → fass [k], {k, Keys [fass]}];

FromCoefficientRules [hrl, V]]

In[]:= f = 1 + 2 x + 3 y - 4 z - 5 x^2 - 6 x y + 7 y^2 + 8 x z + 9 y z + 10 z^2;

In[]:= hf = HomogNS [f, {x, y, z}, {X, Y, Z, W}]

Out[]= W2 + 2 W X - 5 X2 + 3 W Y - 6 X Y + 7 Y2 - 4 W Z + 8 X Z + 9 Y Z + 10 Z2

We still have problems with affine equations that are already homogeneous.

In[]:= HomogNS [x^2 + y^2 - z^2, {x, y, z}, {X, Y, Z, W}]

Out[]= X2 + Y2 - Z2

as this looks like a curve in ℝ2 rather than a surface in ℙ3 although the capitalized variables indicate

they should be regarded as homogeneous and defined only up to a constant multiple. Again using FLT

so as to continue working affinely is the best solution.

An affine surface is imbedded in its homogenization by the map {x, y, z}↦ {X , Y , Z, 1}

Consider the somewhat random point

In[]:= p = {2.`, 3.764709339686058` , -2.773802258655994` }

Out[]= {2., 3.76471, -2.7738 }

In[]:= f /. Thread [{x, y, z} → p]

Out[]= 0.

In[]:= hf /. Thread [{X, Y, Z, W} → Append [p, 1]]

Out[]= 0.

1.9.2 Specialization and Invisible Points

Homogenization introduces new points with last coordinate zero. But projective space is homoge -

neous in the sense that all points are the same, further, as a topological space projective space is

compact. Therefore it is in some ways not appropriate to call the new points infinite. So I adopt the

notation invisible points as these new points do not show up on a contour plot.

The opposite of homogenization is specialization. We can declare any plane aX + bY + cZ + dW = 0 in

projective space to be the set of invisible points by removing them. A copy of affine ℝ3 remains. The

SSchapter1v2.nb 75

default specialization is simply W = 0 leaving the original affine space.

If, however, we have a projective surface given by a homogeneous equation in {X,Y,Z,W}, that plane we

remove generally has intersected the projective surface in a plane curve, possibly in a finite or even

empty set. This I call the invisible curve. One wants to identify this curve, or point set. It is important to

note that this is still a curve or point set in projective space. One way to think of it as being in affine

space is to normalize, and one way to do this is to declare aX+bY+cZ+dW=1

I take, as my example, the hyperboloid

In[]:= h = x^2 + y^2 - z^2 - 1;

Homogenizing we get

In[]:= H = HomogNS [h, {x, y, z}, {X, Y, Z, W}]

Out[]= -W2 + X2 + Y2 - Z2

So the infinite curve is

In[]:= K = H /. {W → 0}

Out[]= X2 + Y2 - Z2

This may look like the equation of a cone but the point {1,0,1,0} is the same as {2,0,2,0} etc. One way to

convert this equation to something that looks like an affine curve is to normalize. We can normalize by

setting any fixed but arbitrary homogeneous equation, other than the one we are considering, to 1. In

this example the easiest is to set Z=1. So we have the affine equation x2 + y2 = 1. Actually what we

really have is a correspondence

{x, y}⟺ {X, Y, 1}

from points on the affine curve x2 + y2 = 1 to homogeneous points {X,Y,1} on X 2 + Y 2 - Z2 = 0, Z = 1 In

this way we may think of the infinite curve of the hyperboloid as a circle.

1.9.3 Infinite Points and curves

We may notice that the equation we get for the infinite curve of a naive surface is, with the possible

exception of using different variable names for affine and projective equations, simply the maximal

form of the affine equation. For example

In[]:= maxFormMD [x^2 + y^2 - z^2 - 1, {x, y, z}]

Out[]= x2 + y2 - z2

This is homogeneous so we can take one representative for a homogeneous point and normalize it

someway, append a zero to get a 4-tuple and call this an infinite point as I did for my previous books.

An easy way to normalize is use the Mathematica function Normalize. This is equivalent to homoge -

neous point on the maximal form as a line and intersecting the line with the unit sphere in ℝ3, but we

get two antipodal points this way. This leads to a nice way to illustrate the infinite curve of an naive

affine surface: Plot the maximal form and the unit sphere in the same plot. The infinite curve is then

76 SSchapter1v2.nb

the intersection if one mentally associates each point with its antipodal point. For example the infinite

curve of the standard hyperboloid can be shown by

In[]:= p = Normalize [{1, 1, Sqrt [2]}]

Out[]= 
1

2
,
1

2
,

1

2



In[]:= Show [ContourPlot3D [{x^2 + y^2 - z^2 ⩵ 0, x^2 + y^2 + z^2 ⩵ 1},

{x, -1, 1}, {y, -1, 1}, {z, -1, 1}, Mesh → None,

ContourStyle → {Orange, LightGray }], Graphics3D [{Blue, Ball [p, .05]}]]

Out[]=

Thus the infinite curve is shown twice, once as the circle of intersection of the two surfaces at the top of

the plot and with a copy at the bottom. Notice the infinite point indicated at the blue dot is properly

written as  1

2
,

1

2
,

1

2
, 0 using this formulation.

The hyperbolic ellipsoid x2 + y2 - z2 + 1 = 0 has the same maximal form so we would get the exact same

picture. We can do, by homogeneity, the following to distinguish these plots since the maximal forms

differ from the equations by only a small constant.

SSchapter1v2.nb 77

In[]:= {ContourPlot3D [{x^2 + y^2 - z^2 ⩵ 1, x^2 + y^2 + z^2 ⩵ 100},

{x, -10, 10}, {y, -10, 10}, {z, -10, 10}, Mesh → None,

ContourStyle → {Orange, Directive [Orange, Opacity [.5]], Gray}],

ContourPlot3D [{x^2 + y^2 - z^2 ⩵ -1, x^2 + y^2 + z^2 ⩵ 100},

{x, -10, 10}, {y, -10, 10}, {z, -10, 10}, Mesh → None,

ContourStyle → {Orange, Directive [Orange, Opacity [.5]], Gray}]}

Out[]=  , 

Some may prefer the hemisphere plots of the plane curve book, then the only points which appear

twice are those on the xy-plane. Here we illustrate with the saddle surface z = xy (see Chapter 2) which

has maximal form x y. Here because the maximal form differs by a linear function the plot (le�) includ -

ing the actual function does not make sense

In[]:= {Labeled [ContourPlot3D [{z - x y ⩵ 0, x^2 + y^2 + z^2 ⩵ 100},

{x, -10, 10}, {y, -10, 10}, {z, 0, 10}, Mesh → None,

ContourStyle → {Orange, Directive [Orange, Opacity [.5]], Gray}], "Wrong"],

Labeled [Show [ContourPlot3D [{x y ⩵ 0, x^2 + y^2 + z^2 ⩵ 1}, {x, -1, 1}, {y, -1, 1},

{z, 0, 1}, Mesh → None, ContourStyle → {Orange, Directive [Orange, Opacity [1]], Gray}],

Graphics3D [{Blue, Ball [{0.274721 , 0., 0.961524 }, .05],

Ball [{0.`, -0.9486832980505138` , 0.31622776601683794` }, .05]}]], "Correct"]}

Out[]= 

Wrong

,

Correct



When normalizing using the sphere a great circle represents a line. So in this case the infinite curve is

equivalent to the homogeneous curve X Y . Note a typical point on the surface x y = 0 might be {2,0,7} or

{0,-3,1) so they would normalize q1= ={0.274721,0.,0.961524} or q2 ={0.,-0.948683,0.316228} ans so as

78 SSchapter1v2.nb

infinite points would be {0.274721,0.,0.961524,0} or {0.,0.948683,0.316228,0}.

The infinite curve can contain more than one connected component. Here is an example

In[]:= f1 = -0.9332667921277373` - 0.54659406197207` x + 1.6228493544271605` x2 -

0.6266424651018005` x3 - 0.15904113742115739` y - 0.15141560817564875` x y +

1.7516424651018003` x2 y - 0.5139019915209658` y2 + 2.3341742198323487` x y2 +

0.9558892896287468` y3 + 0.08847551097802434` z - 0.7608711515528794` x z +

2.763901991520963` x2 z - 0.9825589880399126` y z + 2.728765877365271` x y z +

1.0139019915209662` y2 z - 0.16582578016764984` z2 + 0.8521234122634711` x z2 +

0.019591657532924106` y z2 + 0.010617061317362703` z3 - 1

Out[]= -1.93327 - 0.546594 x + 1.62285 x2 - 0.626642 x3 - 0.159041 y -

0.151416 x y + 1.75164 x2 y - 0.513902 y2 + 2.33417 x y2 + 0.955889 y3 +

0.0884755 z - 0.760871 x z + 2.7639 x2 z - 0.982559 y z + 2.72877 x y z +

1.0139 y2 z - 0.165826 z2 + 0.852123 x z2 + 0.0195917 y z2 + 0.0106171 z3

The infinite curve is

In[]:= f1i = HomogNS [f1, {x, y, z}, {X, Y, Z, W}] /. {W → 0}

Out[]= 0. - 0.626642 X3 + 1.75164 X2 Y + 2.33417 X Y2 + 0.955889 Y3 + 2.7639 X2 Z +

2.72877 X Y Z + 1.0139 Y2 Z + 0.852123 X Z2 + 0.0195917 Y Z2 + 0.0106171 Z3

In[]:= ContourPlot3D f1i ⩵ 0, X2 + Y2 + Z2 ⩵ 1,
{X, -1.2, 1.2}, {Y, -1.2, 1.2}, {Z, -1.2, 1.2}, Mesh → None 

Out[]=

 Since this is a real projective plane curve then Harnack's theorem [See Plane Curve Book, Chapter 9]

applies. If the degree of this curve is d then the number of topological components in the projective

plane must be less than or equal to compd = (d - 1) (d - 2) /2 + 1. Harnack himself noted that plane

curves of degree d with compd components do exist, these are called M-curves. Here is how to make a

naive surface of degree d such that the infinite curve has compd components if one knows an M-curve

SSchapter1v2.nb 79

for this degree [See discussion in Section 9.2 of Curve Book].

We start with a plane curve f of degree d with compd components. We get a naive surface g by apply -

ing HomogNS to f , note the plane z - 1 intersects this surface in f . Apply the iTransform[z-1] to get a

curve with this infinite curve. Here is an example.

Start with the plane curve

In[]:= f2 = 17 - 20 x2 + 4 x4 - 20 y2 + 17 x2 y2 + 4 y4;

In[]:= ContourPlot [f2 ⩵ 0, {x, -3, 3}, {y, -3, 3}, ImageSize → Small]

Out[]=

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

This curve has 4 components . Set

In[]:= F2 = HomogNS [f2, {x, y}, {x, y, z}]

Out[]= 4 x4 + 17 x2 y2 + 4 y4 - 20 x2 z2 - 20 y2 z2 + 17 z4

Now we transform it, and to eliminate the singular point subtract 1. This is our example

In[]:= F2i = FLTNS [F2, iTransform3D [z - 1], {x, y, z}] - 1

Out[]= -0.432084 - 4.52473 x + 11.5184 x2 - 10.6228 x3 + 2.53341 x4 - 4.52473 y +

21.0991 x y - 21.2329 x2 y + 1.10256 x3 y + 11.5184 y2 - 21.2329 x y2 + 22.1383 x2 y2 -

10.6228 y3 + 1.10256 x y3 + 2.53341 y4 + 0.622306 z - 7.35632 x z + 20.4645 x2 z -

14.2865 x3 z - 7.35632 y z + 42.0023 x y z - 19.3594 x2 y z + 20.4645 y2 z -

19.3594 x y2 z - 14.2865 y3 z - 1.0758 z2 + 2.43598 x z2 + 6.33598 x2 z2 + 2.43598 y z2 +

22.203 x y z2 + 6.33598 y2 z2 - 0.647809 z3 + 5.66146 x z3 + 5.66146 y z3 + 0.755609 z4

In[]:= ContourPlot3D [F2i ⩵ 0, {x, -5, 5}, {y, -5, 5}, {z, -5, 5}, Mesh → None, ImageSize → Small]

Out[]=

80 SSchapter1v2.nb

The infinite curve is

In[]:= F2ic = HomogNS [F2i, {x, y, z}, {X, Y, Z, W}] /. {W → 0}

Out[]= 0. + 2.53341 X4 + 1.10256 X3 Y + 22.1383 X2 Y2 + 1.10256 X Y3 + 2.53341 Y4 -

14.2865 X3 Z - 19.3594 X2 Y Z - 19.3594 X Y2 Z - 14.2865 Y3 Z + 6.33598 X2 Z2 +

22.203 X Y Z2 + 6.33598 Y2 Z2 + 5.66146 X Z3 + 5.66146 Y Z3 + 0.755609 Z4

We more clearly see the components in the hemisphere plot

In[]:= ContourPlot3D [{F2ic ⩵ 0, X^2 + Y^2 + Z^2 ⩵ 25},

{X, -5, 5}, {Y, -5, 5}, {Z, 0, 5}, Mesh → None, ImageSize → Small]

Out[]=

1.9.4 Orientable and non orientable surfaces

As we pointed out in Section 1.2 above to even talk about being orientation , one or two sided, we need

a smooth surface, otherwise there could be many “sides”. A necessary condition for being orientable is

that each projective line, not lying in the surface, must meet the surface in an even number of projec -

tive points counted by multiplicity. In particular, a naive surface of affine degree d will be orientable if

d is even, for example quadric surfaces, and one-sided if d is odd, for example cubic surfaces. Some

care is needed for parametrically defined surfaces.

1.9.5 Parametric curves and Surfaces in Projective Space

Given a rational parametric surface there are two issues going to projective space. The first is a missing

region where the parameters, say s, t, go to infinity. One solution is to just plot with a large range for

the variables. We will look at several examples

The paraboloid is given by (see Chapter 2)

In[]:= parParab = 
2 t

1 + t^2
s,

1 - t^2

1 + t^2
s, s^2;

SSchapter1v2.nb 81

In[]:= Show [ParametricPlot3D [parParab , {t, 0, 10}, {s, -10, 10}, Mesh → None],

ParametricPlot3D [{0, t, t^2}, {t, -10, 10}, PlotStyle → Thickness [.01]]]

Out[]=

The plot shows the missing curve appears to be the parametric parabola {0, t, t ^ 2}.

In[]:= ParametricPlot3D [parParab , {t, -10, 10}, {s, -10, 10}, Mesh → None]

Out[]=

However using negative values of t this parameterization is not 1-1 so the missing region disappears.

Another example is the sphere with parameterization

In[]:= parSphere = 
1 - t2 × 2 s

1 + t2 × 1 + s2
,

1 - t2 × 1 - s2
1 + t2 × 1 + s2

,
2 t 1 + s2

1 + t2 × 1 + s2
;

In[]:= {ParametricPlot3D [parSphere , {t, -4, 4}, {s, -4, 4}, Mesh → None,

MaxRecursion → 5, Axes → False], ParametricPlot3D [parSphere ,

{t, -16, 16}, {s, -16, 16}, Mesh → None, MaxRecursion → 5, Axes → False]}

Out[]=  , 

Here is the missing region is a rectangle.

For the hyperboloid

82 SSchapter1v2.nb

In[]:= parHyp = 
t - s^2 t

1 - s^2
,
1 + s2 - 2 s t

1 - s2
,
2 s - t - s2 t

1 - s2
;

In[]:= ParametricPlot3D [parHyp, {t, -30, 30}, {s, -30, 30}, PlotRange → Full]

Out[]=

The missing curve is the the union of two lines, but this parametric representation does not do a good

job of showing the surface. We do have a better parameterization of the saddle surface, however.

parSS = 
1 + s t

-1 + s t
,

s - t

-1 + s t
,

s + t

-1 + s t
;

In[]:= ParametricPlot3D [parHyp2, {t, -20, 20}, {s, -20, 20}, Mesh → None]

Out[]=

If you really want to plot the hyperboloid parametrically [Van Seggern] suggests the parameterization

as a surface of revolution

SSchapter1v2.nb 83

In[]:= ParametricPlot3D [

{{u Cos[v], u Sin[v], Sqrt [u^2 - 1]}, {u Cos[v], u Sin[v], -Sqrt [u^2 - 1]}}, {u, 0, 5}, {v, -Pi, Pi}]

Out[]=

The second issue is the infinite curve. Some infinite points may arise when one or both parameters go

to infinity. Otherwise infinite points may arise when the denominators become zero. One can find

some examples of infinite points by normalizing points with large parameters or parameters making

the denominator small, but it is hard to get an equation out of this. It is better to implicitize the surface

and calculate the infinite points from that.

1.10 Lines on a Projective Surface through a Given Point.
In chapter 2 many quadric surfaces will be ruled surfaces which implies each point is contained in one

or several lines of the surface. I show how to find them and their infinite points.

1.10 .1 The method

We start with a smooth real affine point p on a naive surface and find the parametric equation of the

real line if it exists. We first find the tangent plane with the global function tangentPlaneNS and then

intersect this plane with our surface using NSolve. If this intersection is empty or imaginary there is no

real line otherwise there may be one or more lines. For each solution q ≠ p a possible line will have

parametric equation line = p + t (q - p) which gives the point p for t = 0 and q for t = 1. In Chapter 2 if

q ≠ p exists the quartic surface contains this line. Otherwise we may wish to check d - 2 additional

values of t to be sure we have a line.

An important comment is that when we intersect the the tangent plane and surface we get an underde -

termined system. There should be at least one solution, the point p, but to get a line we need a solu -

tion different from p. Mathematica should give a warning message and will provide a pseudo-random

rational linear equation to obtain a finite solution set. I discuss this in section 2.3 of my Plane Curve

Book. This should be sufficient but, as I warn, not always. Unfortunately these pseudo random linear

equations are set at the initialization stage of each Mathematica session, the good thing is that if you re-

run the example during a given session you will get the same answer, but the down side is that if this

84 SSchapter1v2.nb

pseudo-random equation does not give a desired result then it is not enough to just re-run, you need to

provide your own, preferably machine number, linear equation as a third equation. Incidentally, this is

one reason I don’t provide a global function to find these lines. Also note that the chances are that the

original point is not on this pseudo-random or random plane so the points returned will be generally

different from p, so if there is no line may be returned.

 Here are some examples.

 Let S be the surface Si = 0 where

In[]:= S1 = x^2 + y^2 + z^2 - 1;

p1 = 
9

11
,

2

11
, -

6

11
;

In[]:= S1 /. Thread [{x, y, z} → p1]

Out[]= 0

In[]:= tp1 = tangentPlaneNS [S1, p1, {x, y, z}]

Out[]= -2 +
18 x

11
+
4 y

11
-
12 z

11

In[]:= NSolveValues [{S1, tp1}, {x, y, z}, Reals]

NSolveValues : Infinite solution set has dimension at least 1. Returning intersection of solutions with

-
69046 x

57903

-
142003 y

115806

+
40299 z

38602

== 1.

Out[]= {}

So there is no real line as expected.

Second example

In[]:= S2 = x^3 - y^3 + z^4 - 1;

p2 = {-0.8825870838315157` , 1.5`, -1.5`};

tp2 = tangentPlaneNS [S2, p2, {x, y, z}]

Out[]= -8.0625 + 2.33688 x - 6.75 y - 13.5 z

In[]:= sol2 = NSolveValues [{S2, tp2}, {x, y, z}]

NSolveValues : Infinite solution set has dimension at least 1. Returning intersection of solutions with

-
69046 x

57903

-
142003 y

115806

+
40299 z

38602

== 1.

Out[]= {{-24.1402, 13.042, -11.2969 }, {0.122201 , -0.99938, -0.076379 },

{-0.465712 - 1.1209 ⅈ, -0.659138 + 0.648697 ⅈ, -0.348269 - 0.518379 ⅈ},
{-0.465712 + 1.1209 ⅈ, -0.659138 - 0.648697 ⅈ, -0.348269 + 0.518379 ⅈ}}

Pick the second real point to get line

SSchapter1v2.nb 85

In[]:= lS2 = p2 + t (sol2〚2〛 - p2)
Out[]= {-0.882587 + 1.00479 t, 1.5 - 2.49938 t, -1.5 + 1.42362 t}

In[]:= S2 /. Thread [{x, y, z} → (lS2 /. t → .8)]

Out[]= -0.858857

So this line in not in the surface . The picture is

In[]:= Show [ContourPlot3D [{S2 ⩵ 0}, {x, -4, 2}, {y, -1, 2}, {z, -2, 0}, Mesh → None],

ParametricPlot3D [lS2, {t, -1, 2}, PlotStyle → Blue],

Graphics3D [{{Black, Ball [p2, .07]}, {Red, Ball [sol2〚2〛, .06]}}],

Axes → None, Boxed → False, ImageSize → Small]

Out[]=

This line is locally almost in the surface S2 but then diverges from the surface but intersects it transver -

sally at the point sol2[[2]].

Here are some examples where we do get lines in the surface. The third example is the standard

hyperboloid

In[]:= S3 = x^2 + y^2 - z^2 - 1;

p3 = {2.952497092684046` , -1.1325903574074156` , 3.`}

Out[]= {2.9525, -1.13259, 3.}

In[]:= tp3 = tangentPlaneNS [S3, p3, {x, y, z}]

Out[]= -2. + 5.90499 x - 2.26518 y - 6. z

In[]:= sol3 = NSolveValues [{S3, tp3}, {x, y, z}]

NSolveValues : Infinite solution set has dimension at least 1. Returning intersection of solutions with

-
69046 x

57903

-
142003 y

115806

+
40299 z

38602

== 1.

Out[]= {{2.9525, -1.13259, 3.}, {2.9525, -1.13259, 3.}}

We get the original point back with multiplicity 2 as warned earlier.

In[]:= sol3 = NSolveValues [S3 ⩵ 0 && tp3 ⩵ 0 && RandomReal [{-1, 1}, 3].{x, y, z} ⩵ 1, {x, y, z}]

Out[]= {{-1.79925, 2.77359, -3.15121 }, {-0.225929 , -0.990923 , -0.181582 }}

86 SSchapter1v2.nb

In[]:= ls3a = p3 + t (sol3〚1〛 - p3)
ls3b = p3 + t (sol3〚2〛 - p3)

Out[]= {2.9525 - 4.75175 t, -1.13259 + 3.90618 t, 3. - 6.15121 t}

Out[]= {2.9525 - 3.17843 t, -1.13259 + 0.141668 t, 3. - 3.18158 t}

In[]:= Show [ContourPlot3D [x^2 + y^2 - z^2 ⩵ 1, {x, -4, 4}, {y, -4, 4}, {z, -4, 4}, Mesh → None],

Graphics3D [{{Black, Ball [p3, .15]}, {Red, Ball [sol3〚1〛, .15], Ball [sol3〚2〛, .15]}}],

ParametricPlot3D [{ls3a, ls3b}, {t, -1, 4}, PlotStyle → Blue],

Axes → None, Boxed → False, ImageSize → Small]

Out[]=

We get two lines on the surface through this point . We will discuss further in Chapter 2.

For our last example we jump ahead to section 3.8 where we discuss the famous Clebsch Diagonal

Cubic which has 7 Eckart points which are each contained in three surface lines through the point. Here

is one, p4.

In[]:= S4 = 81 (x^3 + y^3 + z^3) - 189 (x^2 y + x^2 z + y^2 x + y^2 z + z^2 x + z^2 y) +

54 x y z + 126 (x y + x z + y z) - 9 (x^2 + y^2 + z^2) - 9 (x + y + z) + 1;

p4 = {1 / 3, 1 / 3, 1 / 3};

Note this is a point on the surface .

In[]:= S4 /. Thread [{x, y, z} → p4]

Out[]= 0

In[]:= tp4 = tangentPlaneNS [S4, p4, {x, y, z}]

Out[]= 24 - 24 x - 24 y - 24 z

In[]:= sol4 = NSolveValues [{S4, tp4}, {x, y, z}, Reals]

NSolveValues : Infinite solution set has dimension at least 1. Returning intersection of solutions with

-
69046 x

57903

-
142003 y

115806

+
40299 z

38602

== 1.

Out[]= {{43.5121, -42.8454, 0.333333 },

{0.333333 , -0.30901, 0.975676 }, {-0.31871, 0.333333 , 0.985376 }}

SSchapter1v2.nb 87

Here we get 3 solutions different from our chosen point so 3 possible lines.

In[]:= ls4a = p4 + t (sol4〚1〛 - p4)
ls4b = p4 + t (sol4〚2〛 - p4)
ls4c = p4 + t (sol4〚3〛 - p4)

Out[]= 
1

3
+ 43.1787 t,

1

3
- 43.1787 t, 0.333333 

Out[]= 0.333333 ,
1

3
- 0.642343 t,

1

3
+ 0.642343 t

Out[]= 
1

3
- 0.652043 t, 0.333333 ,

1

3
+ 0.652043 t

We should check an additional random point on each line to see if they actually lie in the surface, we

leave this to the reader, but give a plot.

In[]:= Show [ContourPlot3D [S4 ⩵ 0, {x, 0, 1}, {y, 0, 1}, {z, 0, 1}, Mesh → None],

Graphics3D [{Black, Ball [{1 / 3, 1 / 3, 1 / 3}, .02]}], ParametricPlot3D [{ls4a, ls4b, ls4c},

{t, -2, 2}, PlotStyle → {Red, Blue, Green }], Axes → None, Boxed → False]

Out[]=

Note that in section 3.8 we give a different method of finding lines on the surface which gives all such

lines at once without needing to know in advance one point on each.

1.10.2 Infinite Points

In constructing our lines we used the general parametric equation lp = p + t {q - p} where p was our

given point and q was a second point on the surface and tangent plane at p. From considerations of

Section 1.9 we see the infinite point of such a line is obtained simply by appending a zero to the point

88 SSchapter1v2.nb

q - p.

For our example we consider the line ls3a of example S3 . Here

In[]:= ls3a

Out[]= {2.9525 - 4.75175 t, -1.13259 + 3.90618 t, 3. - 6.15121 t}

where

In[]:= p3 - sol3〚1〛
Out[]= {4.75175, -3.90618, 6.15121 }

that is, the three coefficients of t. So the infinite point is

In[]:= ip3a = Append [p3 - sol3〚1〛, 0]

Out[]= {4.75175, -3.90618, 6.15121, 0}

Note that the homogenization of S3 with homogenizing variable w is

In[]:= HS3 = x^2 + y^2 - z^2 - w^2;

In[]:= HS3 /. Thread [{x, y, z, w} → ip3a]

Out[]= 1.42109 × 10-14

Note also if

In[]:= q3 = ls3a /. t → 100

Out[]= {-472.222, 389.485, -612.121 }

Then

In[]:= Append q3  q3〚1〛 * ip3a〚1〛, 0
Out[]= {4.75175, -3.91921, 6.15948, 0}

is a good approximation to the infinite point ip3a.

1.11 Overview of this book
In this section we give an overview of the later chapters in the book.

1.11.2 Chapter 2, Quadric Surfaces.

Here we discuss surfaces of degree 2. In this case we can completely classify the possibilities up to

projective linear transformations. A nice summary chart is

SSchapter1v2.nb 89

In particular note that for non degenerate surfaces the classification hinges on the number of real lines

through a point on this surface as discussed in the previous section 1.10. Surfaces with no real lines are

ellipsoids, those with one real line through each regular point are cones (cylinders), and those with 2

distinct real lines through each point are hyperboloids. Since projective linear transformations pre -

serve lines these are clearly distinct classes under these transformations. Less obvious is the fact that

each pair of surfaces in one of these classes equivalent under projective linear transformations. We

show this in this chapter. In particular the saddle surface z = x y is a hyperboloid and equivalent to any

hyperboloid by a projective linear transformation. This does not seem to be clearly understood in the

literature.

Since the saddle surface and cylinder x2 + y2 = 1 clearly have a rational parameterization and there is

a well known one for the sphere then all non-degenerate quadric surfaces are rational.

Later in the chapter we explore symmetries of the ellipses and hyperbolas and find that besides the

obvious ones there are many non-obvious ones.

90 SSchapter1v2.nb

1.11.3 Cubic surfaces.

The surprise here is that while all smooth cubic surfaces do not have lines through every point but do

have exactly 27 lines in the surface counting complex lines as well as real lines. Further they all have

similar configurations. However this does not make them all equivalent under projective linear transfor -

mations.

Important in the study of these 27 lines is the Schläfli double 6 configuration.

Out[]=

12

11

10

9

8

7

1 2 3 4 5 6

This configuration of lines appears as a sub-configuration of the set of all lines in any smooth cubic

surface. Given such a configuration it is then easy to find the additional 15 lines. Conversely given any

such configuration of lines we can derive the implicit equation giving the unique cubic surface contain -

ing these lines. In fact the discussion of this shows that we only need 6 of these lines to find the unique

equation. So if we find one line L1 and 5 skew lines that intersect it, call them L8, L9, L10, L11 and L12,

then already we have enough information to find the unique cubic containing them and the remaining

21 lines.

Alternatively, given the cubic surface we will show how to find all the lines at once. It turns out that we

can find a non-linear system of 4 equations in 4 unknowns, which Mathematica can solve in less than a

second, that allows us to find parametric equations for all the lines. If we are interested we can work

backwards to find a double 6 configuration.

We give a famous example, known as the Clebsch diagonal cubic

cdc = 81 (x^3 + y^3 + z^3) - 189 (x^2 y + x^2 z + y^2 x + y^2 z + z^2 x + z^2 y) +

54 x y z + 126 (x y + x z + y z) - 9 (x^2 + y^2 + z^2) - 9 (x + y + z) + 1;

One can find this surface mentioned also by going to WolframAlpha and typing in “clebsch diagonal

cubic” or MathWorld at https://mathworld.wolfram.com/ClebschDiagonalCubic.html

SSchapter1v2.nb 91

http://mathworld.wolfram.com/ClebschDiagonalCubic.html

1.11.4 Fourth Degree and Related Surfaces

In Chapter 4 we look at some higher degree surfaces, such as the torus. Unfortunately, unlike quadric

or cubic surfaces there is no overlying structure. Some of these surfaces, such as the torus, will still

have infinite symmetry groups, but others will not. One of the main ideas is to discuss the topic of

geometric point groups they include the the well known crystallographic point groups.

 I, the author, will mention that I was exposed to this idea as an undergraduate math student in an

abstract algebra class. The professor, Paul B. Yale, was writing a book about this subject during the

time he was teaching the class. His enthusiasm for the subject affected my future as a mathematician.

If not for him I probably would not be writing this book 50 years later. I will also mention John C. Baez

whose wonderful article The Octotonians in the AMS Bulletin, April 2002, rekindled my interest in this

subject.

 One surface we will study is the quartic hyperboloid x4 + y4 - z4 = 1. which does have a finite algebraic

symmetry group. This comes partly from the fact that there are only finitely many lines in the quartic

hyperboloid.

 Another will be the torus and surfaces algebraically equivalent to this. These will have infinitely many

algebraic symmetries. We will construct also an eighth degree double torus.

1.11.5 Topology and the topology of complex conic and cubic curves.

The material here is somewhat separate from the rest of the book, the reader only needs to be familiar

with Chapter 1. So it can be read by itself.

The major point in this chapter is that the sphere and projective hyperboloid are topologically distinct

surfaces. We will show this visually using the chromatic number. But the the projective hyperboloid,

including variants such as the projective saddle surface, are topologically equivalent to the torus. We

prove the later fact by explicit invertible continuous transforms.

As an interlude away from topology I redo some of the material of Chapter 7 of my Plane Curve Book. In

particular I have correct normal form algorithms for smooth conics and cubics. The normal form for

92 SSchapter1v2.nb

conics is simply y = x2, but the algorithm gives an actual projective linear transform taking the conic to

this form. For the cubics I give the correct Weierstrass normal form y2 = 4 x3 - g2 x - g3 Here the

constants g2, g3 characterize the cubics under projective linear equivalence. So here the normal form

algorithm calculates these numbers as well as the projective linear transform connecting the original

cubic to it normal form.

I then use this material to first calculate the topology of smooth plane conics and cubics. This material

is known since the topology depends only on the genus which is 0 for conics and 1 for cubics. However

my explicit approach depends on the earlier results in this Chapter. I show that the complex projective

solution set of a conic equation is the sphere, something I have not seemed mentioned explicitly

elsewhere while it is well known since the early 1800’s that the complex projective solution set of the

cubic is the torus. But this is usually known only theoretically, in this chapter I use the Mathematica

implementation of the Weierstrass P function to give explicit maps from the solution set to and from

the torus. In fact, since the torus is topologically equivalent to the saddle surface z = x y any pair of

real numbers gives a solution, usually complex, of the cubic equation. Unlike the torus, however, some

of the real points of the saddle surface are infinite so one does not get all solutions this way from the

affine saddle surface.

SSchapter1v2.nb 93

0.805458 - 0.996016 x + 4 x3 - y2 = 0

a

b

c

d

e

f

j
k

i

i

-2 -1 0 1 2 3

-6

-4

-2

0

2

4

6

"point " "solution f8" "saddle surface "

"a" {0.373058 , 0.800976 } {1.17821 , - 0.910332 , - 1.07256 }

"b" {0.0557982 , - 0.866358 } {7.05402 , 1.13234 , 7.98754 }

"c" {1.77165 , - 4.61346 } {2.84656 , - 2.19231 , - 6.24053 }

"d" {- 0.4, 0.973583 } {0.145976 , - 0.651173 , - 0.095056 }

"e" {1.33535 , 3. } {1.65126 , - 1.10044 , - 1.81711 }

"f" {- 0.719703 , - 0.176495 } {- 2.15759 , - 0.378341 , 0.816306 }

"g" {0.454513 - 0.21764 ⅈ, - 0.713384 + 0.197311 ⅈ} {3, 1.1, 3.3 }

"h" {0.249724 - 0.0718865 ⅈ, - 0.776975 - 0.0124136 ⅈ} {4, 1, 4}

"i" "infinite Point " {2.20657 , - 1.44126 , - 3.18024 }

"j" {- 0.339802 , - 0.993461 } "infinite Point "

"k" {0.427876 , - 0.832241 } "infinite Point "

"l" {- 1.21094 - 0.307908 ⅈ, - 1.12035 + 2.22907 ⅈ} {5, - 0.8, - 4}

"m" {- 0.0439841 - 0.17124 ⅈ, - 0.935075 - 0.0998141 ⅈ} {5, 0, 0}

"n" {- 0.293159 + 0.652481 ⅈ, - 1.61489 + 0.336897 ⅈ} {0, - 5, 0}

"o" {0.219746 + 0.391215 ⅈ, - 0.585984 + 0.343408 ⅈ} - 5 , - 5 , 5
"p" {- 0.0428533 + 0.392137 ⅈ, - 1.01089 + 0.30821 ⅈ} {- 2, - 6, 12 }

"q" {- 9.98835 - 0.196065 ⅈ, 1.85994 - 63.0407 ⅈ} {1.8, - 2, - 3.6 }

"r" {- 1.37753 + 0.802384 ⅈ, - 2.99584 - 2.57118 ⅈ} {1, - 7, - 7}

94 SSchapter1v2.nb

References

[Plane Curve Book] Barry H. Dayton, A numerical approach to Real Algebraic Curves with the Wolfram

Language, Wolfram Media, 2018. The print version is available only from Amazon.com but for Mathe -

matica users notebook versions are available free from Wolfram media (Zip file) or the author’s website

https://barryhdayton.space/curvebook/ChapterNotebooks.html on a chapter by chapter basis. The

latter notebooks contain some of the corrections noted on the author’s website.

[Space Curve Book] Available on author’s website https://barryhdayton.space/SpaceCurves/spin-

dex.html

[Abhyankar] Shreeram S. Abhyankar, Algebraic Geometry for Scientists and Engineers , AMS, 1990.

[Montiel, Ros] Sebastián Montiel, Antonio Ros, Curves and Surfaces, AMS, 2009.

SSchapter1v2.nb 95

